
www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript Programming with
jQuery, Rails, and Node.js

Learn CoffeeScript programming with the three most
popular web technologies around

Michael Erasmus

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript Programming with jQuery,
Rails, and Node.js

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1061212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-958-8

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Michael Erasmus

Reviewers
Stephen Ball

Shreyank Gupta

Acquisition Editor
Mary Jasmine

Commissioning Editor
Meeta Rajani

Technical Editor
Dominic Pereira

Copy Editor
Alfida Paiva

Project Coordinator
Shraddha Bagadia

Proofreader
Maria Gould

Indexer
Hemangini Bari

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Michael Erasmus has been developing software for over 10 years. He has been a
C# programmer for quite a few of them, but has luckily been enlightened enough to
become an open source zealot during the last few years. The most loved tools in his
utility belt are Ruby and Rails, Linux, MongoDB, Vim, jQuery, and CoffeeScript.

He's interested in all manner of science and technology, but tends to dwell on
things such as elegant and eccentric programming languages, machine learning and
statistics, web development, Internet startups, and civic hacking.

He is currently working at 22seven.com, building a service that will help change
people's behavior and do more with the money they have.

When he's not sitting in front of the computer, he likes pulling faces to amuse his
baby son, apologizing to his wonderful wife for sitting in front of a computer all
day, or arguing endlessly with friends, family, colleagues, and random strangers.
He lives near the beach in Muizenberg, Cape Town and loves it.

I would like to thank my wonderful wife for supporting me in
all my crazy endeavors and always being there when things get
tough. Thanks to my employers and colleagues for their support
and feedback. I would also like to express my gratitude to the open
source community in general, and for everyone out there selflessly
sharing your work.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Stephen Ball works for PhishMe Inc. as a full stack Rails developer. He started
programming in BASIC in the 80s and has been tinkering on the Internet since the
early 90s. He's programming for the Web in Perl, PHP, Python, Django, Node.js, and
Rails. He currently writes a Ruby and Rails blog at http://rakeroutes.com and a
CoffeeScript blog at http://coffeescriptcafe.com. He lives with his wife, Sarah,
and two children, Edward and Marie, in Durham, NC, USA.

Shreyank Gupta is a passout of NIT Durgapur. He works as a programmer
and web developer at Red Hat since 2009. In his free time he works on improving
his photography.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Why CoffeeScript?	 7

CoffeeScript syntax	 8
Semicolons and braces	 9
Whitespace	 9
Parenthesis	 10

CoffeeScript has great function syntax	 11
Return isn't required	 12
Function arguments	 12
Where did the var keyword go?	 13

CoffeeScript handles scope better	 14
Top level var keywords	 15

CoffeeScript has better object syntax	 16
Inheritance	 17
Overwhelmed?	 18
Extending prototypes	 18

A few other things CoffeeScript fixes	 18
Reserved words and object syntax	 19
String concatenation	 21
Equality	 21
The existential operator	 22

List comprehensions	 24
The while loop 	 24

Conditional clauses and logical aliases	 28
Array slicing and splicing	 29
Destructuring or pattern matching	 30
=> and @	 33
Switch statements	 35

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chained comparisons	 36
Block strings, block comments, and strings	 36
Summary	 36

Chapter 2: Running CoffeeScript	 39
The CoffeeScript stack	 39
Node.js and npm	 40
Node.js, npm, and CoffeeScript on Windows	 41
Installing CoffeeScript on a Mac	 44

Using the Apple installer	 44
Using Homebrew	 46
Installing CoffeeScript with npm	 47

Installing CoffeeScript on Linux	 48
Ubuntu and MintOS	 48
Debian	 48
Other distributions	 48
Installing CoffeeScript with npm	 49

Building Node.js from source	 49
Building on Linux or Unix	 49
Building on Windows	 50

Using CoffeeScript	 51
The coffee command	 51

The REPL	 52
Running .coffee files	 52
Compiling to JavaScript	 53
Watching	 53
Putting it all together	 53

Summary	 54
Chapter 3: CoffeeScript and jQuery	 55

Finding and changing elements	 56
The $ function	 56

Utility functions	 57
Ajax methods	 58
Using jQuery	 58
Using CoffeeScript and jQuery in the browser	 58

Compiling CoffeeScript	 58
jQuery and CoffeeScript	 59
Testing it all	 60
Running a local web server	 61

Our application	 61
TodoMVC	 62

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Our initial HTML	 62
Initializing our app	 63
Adding a to-do item	 64

Using localStorage	 64
Displaying the to-do items	 66
Showing the to-do items	 69
Removing and completing items 	 70
Now, it's your turn!	 71

Summary	 71
Chapter 4: CoffeeScript and Rails	 73

What makes Rails special?	 73
Convention over configuration	 73
Don't repeat yourself (DRY)	 74

Rails and JavaScript	 74
Rails and CoffeeScript	 75
Installing Rails	 76

Installing Rails using RailsInstaller	 76
Installing Rails using RVM	 76
Got Rails installed?	 77

Developing our Rails application	 77
MVC	 78

Running our application	 78
Our todo_items resource	 79
routes.rb	 80
The controller	 80
The view	 81
The CSS	 82
Our model	 83
Migrations	 84
The Rails console	 85
Displaying the items in our view using ERB	 87
Creating a partial	 88
Adding new items	 89
Let's try and add a to-do item	 90
Adding a CoffeeScript view	 91
CoffeeScript in the asset pipeline	 91
Completing the to-do items	 92
Removing tasks	 93
Now, it's your turn	 93

Summary	 94

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 5: CoffeeScript and Node.js	 95
Node is event-driven	 95
Node is fast and scalable	 96
Node is not Rails	 96
Node and CoffeeScript	 96
"Hello World" in Node	 96
Express	 97
WebSocket	 97
Jade	 98
Our application	 98
Let's get started	 98

package.json	 99
Installing our modules	 99
Creating our app	 100
Running our application	 100

Creating a view	 101
node-supervisor	 102
The to-do list view	 103

Middleware	 104
Our stylesheet	 104

The client side	 105
Adding collaboration	 108
Creating the collaboration UI	 108
WebSocket on the client	 109
WebSocket on the server	 110
Joining a list	 111

The UI	 112
Leaving a list	 114
Testing it all	 115

Adding to-do items to a shared list	 116
Removing to-do items from a shared list	 118

Now, it's your turn	 120
Summary	 120

Index	 121

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
JavaScript is a quirky little language that was written by Brendan Eich when he
was working at Netscape around 1995. It was the first browser-based scripting
language and ran only in Netscape Navigator at the time, but it eventually found
its way into most other web browsers. Back then, web pages consisted almost
entirely of static markup. JavaScript (initially named LiveScript) emerged around
the need to make pages dynamic and to bring the power of a full scripting
language to browser developers.

A lot of the design decisions of the language were driven by the need of simplicity
and ease of use, although at the time, some were made for pure marketing reasons
at Netscape. The name "JavaScript" was chosen to associate it with Java from Sun
Microsystems, despite the fact that Sun really had nothing to do with it and that it's
conceptually quite different from its namesake.

Except in one way, that is, most of its syntax was borrowed from Java, and also
C and C++, so as to be familiar to the programmers coming from these languages.
But despite looking similar, it is in fact a very different beast under the hood and
shares characteristics with the more exotic languages such as Self, Scheme, and
Smalltalk. Among these are dynamic typing, prototypical inheritance, first class
functions, and closures.

So we ended up with a language that looked a lot like some of the mainstream
languages at the time and could be coaxed into acting a lot like them, but with quite
different central ideas. This has caused it to be very misunderstood for many years.
A lot of programmers never saw it as being a "serious" programming language and
thus didn't apply a lot of the best development practices built up over decades when
it came to writing browser code.

Those who did delve further into the language were sure to find a lot of strangeness.
Eich himself admitted that the language was prototyped within about 10 days, and
even though what he came up with was impressive, JavaScript isn't without (many)
warts. These too didn't really help to raise its profile.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Despite all these issues, JavaScript still became one of the most widely used
programming languages in the world, if not merely because of the explosion of the
Internet and the spread of web browsers. Support across a multitude of browsers
would seem to be a great thing, but it also caused havoc because of differences in
implementations, both in the language and the DOM.

Around 2005, the term AJAX was coined to describe a style of JavaScript
programming that was made possible by the introduction of the XMLHTTPRequest
object in browsers. This meant that developers could write client-side code that
could communicate with the server using HTTP directly, and update page elements
without reloading the page. This was really a turning point in the history of the
language. All of a sudden, it was being used in "serious" web applications, and
people began to see the language in a different light.

In 2006, John Resig released jQuery to the world. It was designed to simplify client-
side scripting, DOM manipulation, and AJAX, as well as to abstract away many of
the inconsistencies across browsers. It became an essential tool for many JavaScript
programmers. To date, it is used on 55 percent of the top 10, 000 websites in the world.

In 2009, Ryan Dahl created Node.js, an event-driven network application framework
written on top of the Google V8 JavaScript engine. It quickly became very popular,
especially for writing web server applications. A big factor in its success has been the
fact that you could now write JavaScript on the server, as well as in the browser. An
elaborate and distinguished community has sprung up around the framework, and
at present the future of Node.js is looking very bright.

Early in 2010, Jeremy Ashkenas created CoffeeScript, a language that compiles to
JavaScript. Its goal is to create cleaner, more concise, and more idiomatic JavaScript
and to make it easier to use the better features and patterns of the language. It does
away with a lot of the syntactic cruft of JavaScript, reducing the line noise and
generally creating much shorter and clearer code.

Influenced by languages such as Ruby, Python, and Haskell, it borrows some of the
powerful and interesting features of these languages. Although it can look quite
different, the CoffeeScript code generally maps to its generated JavaScript pretty
closely. It has grown to be an overnight success, quickly being adopted by the Node.
js community as well as being included in Ruby on Rails 3.1.

Brendan Eich has also expressed his admiration for CoffeeScript, and has used it as an
example of some of the things he would like to see in the future versions of JavaScript.

This book serves as an introduction to the language as well as a motivation for why
you should write CoffeeScript instead of JavaScript wherever you can. It also then
explores using CoffeeScript in the browser using jQuery and Ruby on Rails, as well
as on the server using Node.js.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What this book covers
Chapter 1, Why CoffeeScript?, introduces CoffeeScript and delves deeper into the
differences between it and JavaScript, specifically focusing on the parts of JavaScript
that CoffeeScript aims to improve.

Chapter 2, Running CoffeeScript, goes into a short introduction of the CoffeeScript
stack and how it's typically packaged. You will learn how to install CoffeeScript
on Windows, Mac, and Linux using Node.js and npm. You will get to know the
CoffeeScript compiler (coffee) as well as get familiar with some helpful tools and
resources for day-to-day development in CoffeeScript.

Chapter 3, CoffeeScript and jQuery, introduces client-side development using jQuery
and CoffeeScript. We also start implementing a sample application for this book
using these technologies.

Chapter 4, CoffeeScript and Rails, starts with a brief overview of Ruby on Rails, and its
history with JavaScript frameworks. We are introduced to the Asset Pipeline in Rails
3.1 and how it integrates with CoffeeScript and jQuery. We then move to adding a
backend to our sample application using Rails.

Chapter 5, CoffeeScript and Node.js, starts with a brief overview of Node.js, its history,
and philosophy. It then demonstrates how easy it is to write server-side code
in CoffeeScript using Node.js. We then implement the final piece of the sample
application using WebSockets and Node.js.

What you need for this book
To use this book, you need a computer running Windows, Mac OS X, or Linux and a
basic text editor. Throughout the book, we'll be downloading some software that we
need from the Internet, all of which will be free and open source.

Who this book is for
This book is for existing JavaScript programmers who would like to learn more
about CoffeeScript, or someone who has some programming experience and
would like to learn more about web development using CoffeeScript. It also serves
as a great introduction to jQuery, Ruby on Rails, and Node.js. Even if you have
experience with one or more of these frameworks, this book will show you how
you can use CoffeeScript to make your experiences with them even better.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You'll see that the clause of the if
statement does not need be enclosed within parentheses".

A block of code is set as follows:

gpaScoreAverage = (scores...) ->
 total = scores.reduce (a, b) -> a + b
 total / scores.length

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

create: (e) ->
 $input = $(event.target)
 val = ($.trim $input.val())

Any command-line input or output is written as follows:

coffee -co public/js -w src/

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"a footer will have the Clear completed button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?
CoffeeScript compiles to JavaScript and follows its idioms closely. It's quite possible
to rewrite any CoffeeScript code in Javascript and it won't look drastically different.
So why would you want to use CoffeeScript?

As an experienced JavaScript programmer, you might think that learning a completely
new language is simply not worth the time and effort.

But ultimately, code is for programmers. The compiler doesn't care how the code
looks or how clear its meaning is; either it will run or it won't. We aim to write
expressive code as programmers so that we can read, reference, understand,
modify, and rewrite it.

If the code is too complex or filled with needless ceremony, it will be harder to
understand and maintain. CoffeeScript gives us an advantage to clarify our ideas
and write more readable code.

It's a misconception to think that CoffeeScript is very different from JavaScript. There
might be some drastic syntax differences here and there, but in essence, CoffeeScript
was designed to polish the rough edges of JavaScript to reveal the beautiful language
hidden beneath. It steers programmers towards JavaScript's so-called "good parts"
and holds strong opinions of what constitutes good JavaScript.

One of the mantras of the CoffeeScript community is: "It's just JavaScript", and I have
also found that the best way to truly comprehend the language is to look at how it
generates its output, which is actually quite readable and understandable code.

Throughout this chapter, we'll highlight some of the differences between the two
languages, often focusing on the things in JavaScript that CoffeeScript tries to improve.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[8]

In this way, I would not only like to give you an overview of the major features of
the language, but also prepare you to be able to debug your CoffeeScript from its
generated code once you start using it more often, as well as being able to convert
existing JavaScript.

Let's start with some of the things CoffeeScript fixes in JavaScript.

CoffeeScript syntax
One of the great things about CoffeeScript is that you tend to write much shorter
and more succinct programs than you normally would in JavaScript. Some of this
is because of the powerful features added to the language, but it also makes a few
tweaks to the general syntax of JavaScript to transform it to something quite elegant.
It does away with all the semicolons, braces, and other cruft that usually contributes
to a lot of the "line noise" in JavaScript.

To illustrate this, let's look at an example. On the left-hand side of the following
table is CoffeeScript; on the right-hand side is the generated JavaScript:

CoffeeScript JavaScript
fibonacci = (n) ->
 return 0 if n == 0
 return 1 if n == 1
 (fibonacci n-1) +
(fibonacci n-2)

alert fibonacci 10

var fibonacci;

fibonacci = function(n) {
 if (n === 0) {
 return 0;
 }
 if (n === 1) {
 return 1;
 }
 return (fibonacci(n - 1))
+ (fibonacci(n - 2));
};

alert(fibonacci(10));

To run the code examples in this chapter, you can use the great Try CoffeeScript
online tool, at http://coffeescript.org. It allows you to type in CoffeeScript
code, which will then display the equivalent JavaScript in a side pane. You can
also run the code right from the browser (by clicking the Run button in the
upper-left corner). If you prefer to get CoffeeScript running on your computer
to run the samples first, skip to the next chapter and then come back once you
have CoffeeScript installed. This tool is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

At first, the two languages might appear to be quite drastically different, but
hopefully as we go through the differences, you'll see that it's all still JavaScript
with some small tweaks and a lot of nice syntactical sugar.

Semicolons and braces
As you might have noticed, CoffeeScript does away with all the trailing semicolons at
the end of a line. You can still use a semicolon if you want to put two expressions on a
single line. It also does away with enclosing braces (also known as curly brackets) for
code blocks such as if statements, switch, and the try..catch block.

Whitespace
You might be wondering how the parser figures out where your code blocks start
and end. The CoffeeScript compiler does this by using syntactical whitespace. This
means that indentation is used for delimited code blocks instead of braces.

This is perhaps one of the most controversial features of the language. If you think
about it, in almost all languages, programmers tend to already use indentation of
code blocks to improve readability, so why not make it part of the syntax? This is
not a new concept, and was mostly borrowed from Python. If you have any
experience with significant whitespace language, you will not have any trouble
with CoffeeScript indentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[10]

If you don't, it might take some getting used to, but it makes for code that is
wonderfully readable and easy to scan, while shaving off quite a few keystrokes.
I'm willing to bet that if you do take the time to get over some initial reservations
you might have, you might just grow to love block indentation.

Blocks can be indented with tabs or spaces, but be careful about
being consistent using one or the other, or CoffeeScript will not
be able to parse your code correctly.

Parenthesis
You'll see that the clause of the if statement does not need be enclosed within
parentheses. The same goes for the alert function; you'll see that the single string
parameter follows the function call without parentheses as well. In CoffeeScript,
parentheses are optional in function calls with parameters, clauses for if..else
statements, as well as while loops.

Although functions with arguments do not need parentheses, it is still a good idea
to use them in cases where ambiguity might exist. The CoffeeScript community has
come up with a nice idiom: wrapping the whole function call in parenthesis. The use
of the alert function in CoffeeScript is shown in the following table:

CoffeeScript JavaScript

alert square 2 * 2.5 + 1

alert (square 2 * 2.5) + 1

alert(square(2 * 2.5 + 1));

alert((square(2 * 2.5)) + 1);

Functions are first class objects in JavaScript. This means that when you refer
to a function without parentheses, it will return the function itself, as a value.
Thus, in CoffeeScript you still need to add parentheses when calling a function
with no arguments.

By making these few tweaks to the syntax of JavaScript, CoffeeScript arguably
already improves the readability and succinctness of your code by a big factor,
and also saves you quite a lot of keystrokes.

But it has a few other tricks up its sleeve. Most programmers who have written a
fair amount of JavaScript would probably agree that one of the phrases that gets
typed the most frequently would have to be the function definition function(){}.
Functions are really at the heart of JavaScript, yet not without its many warts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

CoffeeScript has great function syntax
The fact that you can treat functions as first class objects as well as being able to
create anonymous functions is one of JavaScript's most powerful features. However,
the syntax can be very awkward and make the code hard to read (especially if
you start nesting functions). But CoffeeScript has a fix for this. Have a look at the
following snippets:

CoffeeScript JavaScript

-> alert 'hi there!'
square = (n) -> n * n

var square;
(function() {
 return alert('hi there!');
});
square = function(n) {
 return n * n;
};

Here, we are creating two anonymous functions, the first just displays a dialog and
the second will return the square of its argument. You've probably noticed the funny
-> symbol and might have figured out what it does. Yep, that is how you define
a function in CoffeeScript. I have come across a couple of different names for the
symbol but the most accepted term seems to be a thin arrow or just an arrow. This
is as opposed to the fat arrow, which we'll discuss later.

Notice that the first function definition has no arguments and thus we can drop the
parenthesis. The second function does have a single argument, which is enclosed in
parenthesis, which goes in front of the -> symbol. With what we now know, we can
formulate a few simple substitution rules to convert JavaScript function declarations
to CoffeeScript. They are as follows:

•	 Replace the function keyword with ->
•	 If the function has no arguments, drop the parenthesis
•	 If it has arguments, move the whole argument list with parenthesis in front

of the -> symbol
•	 Make sure that the function body is properly indented and then drop the

enclosing braces

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[12]

Return isn't required
You might have noted that in both the functions, we left out the return keyword.
By default, CoffeeScript will return the last expression in your function. It will try
to do this in all the paths of execution. CoffeeScript will try turning any statement
(fragment of code that returns nothing) into an expression that returns a value.
CoffeeScript programmers will often refer to this feature of the language by saying
that everything is an expression.

This means you don't need to type return anymore, but keep in mind that this can,
in many cases, alter your code subtly, because of the fact that you will always return
something. If you need to return a value from a function before the last statement,
you can still use return.

Function arguments
Function arguments can also take an optional default value. In the following code
snippet you'll see that the optional value specified is assigned in the body of the
generated Javascript:

CoffeeScript JavaScript

square = (n=1) ->
 alert(n * n)

var square;

square = function(n) {
 if (n == null) {
 n = 1;
 }
 return alert(n * n);
};

In JavaScript, each function has an array-like structure called arguments with
an indexed property for each argument that was passed to the function. You can
use arguments to pass in a variable number of parameters to a function. Each
parameter will be an element in arguments and thus you don't have to refer to
parameters by name.

Although the arguments object acts somewhat like an array, it is in not in fact a
"real" array and lacks most of the standard array methods. Often, you'll find that
arguments doesn't provide the functionality needed to inspect and manipulate its
elements like they are used with an array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

This has forced many programmers to use a hack by making Array.prototype.
slice copy the argument object elements, or to use the jQuery.makeArray method
to create a standard array, which can then be used like normal.

CoffeeScript borrows this pattern of creating an array from arguments that are
represented by splats, denoted with three dots (...). These are shown in the
following code snippet:

CoffeeScript:

gpaScoreAverage = (scores...) ->
 total = scores.reduce (a, b) -> a + b
 total / scores.length

alert gpaScoreAverage(65,78,81)
scores = [78, 75, 79]
alert gpaScoreAverage(scores...)

JavaScript:

var gpaScoreAverage, scores,
 __slice = [].slice;

gpaScoreAverage = function() {
 var scores, total;
 scores = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 total = scores.reduce(function(a, b) {
 return a + b;
 });
 return total / scores.length;
};

alert(gpaScoreAverage(65, 78, 81));
scores = [78, 75, 79];
alert(gpaScoreAverage.apply(null, scores));

Notice that in the function definition, the parameter is followed by This
tells CoffeeScript to allow for variable arguments. The function can then be
invoked using either a list of parameters or an array followed by

Where did the var keyword go?
In JavaScript, you create local variables by prefixing their declarations with
a var keyword. If you omit it, the variable will be created in the global scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[14]

You'll see throughout these examples that that we didn't need to use the var
keyword, and that CoffeeScript created the actual variable declarations at the
top of the function in the generated JavaScript.

If you're an experienced JavaScripter, you might be wondering how you would
then go about creating global variables. The simple answer is you can't.

Many people (probably including the authors of CoffeeScript) would argue that
this is a good thing, because in most cases global variables should be avoided.
Don't fret though, as there are ways to create top-level objects that we'll get to
in a moment. But this does lead us neatly onto another benefit of CoffeeScript.

CoffeeScript handles scope better
Take a look at the following snippet of JavaScript. Notice that a variable called
salutation gets defined in two places, inside the function, as well as after the
function gets called the first time:

JavaScript
var greet = function(){
 if(typeof salutation === 'undefined')
 salutation = 'Hi!';
 console.log(salutation);
}
greet();
salutation = "Bye!";
greet();

In JavaScript, when you omit the var keyword while declaring a variable, it
immediately becomes a global variable. Global variables are available in all
scopes, and thus can be overwritten from anywhere, which often ends up as
being a mess.

In the previous example, the greet function first checks if the salutation variable
is defined (by checking if typeof equals undefined, a common workaround to see
if a variable is defined in JavaScript). If it has not been defined previously, it creates
it without a var keyword. This will immediately promote the variable to the global
scope. We can see the consequences of this in the rest of the snippet.

The first time the greet function is called, the string Hi! will be logged. After the
salutation has been changed and the function is called again, the console will instead
log Bye!. Because the variable was leaked to be a global variable, its value was
overwritten outside of the function scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

This odd "feature" of the language has been the cause of many a headache for some
weary programmer who forgot to include a var keyword somewhere. Even if you
mean to declare a global variable, it is generally considered to be a bad design choice,
which is why CoffeeScript disallows it.

CoffeeScript will always add the var keyword to any variable declaration to make
sure that it doesn't inadvertently end up as a global declaration. In fact, you should
never type var yourself, and the compiler will complain if you do.

Top level var keywords
When you declare a var normally at the top level of your script in JavaScript,
it will still be available globally. This can also cause havoc when you include a
bunch of different JavaScript files, since you might overwrite variables declared
in earlier scripts.

In JavaScript and subsequently CoffeeScript, functions act as closures, meaning
that they create their own variable scope as well as having their enclosing scope
variables available to them.

Throughout the years, a common pattern started to emerge where library authors
wrap their entire script in an anonymous closure function that they assign to a
single variable.

The CoffeeScript compiler does something similar, and will wrap scripts in an
anonymous function to avoid leaking its scope. In the following sample, the
JavaScript is the output of running the CoffeeScript compiler:

CoffeeScript JavaScript

greet = -> salutation = 'Hi!' (var greet;
greet = function() {
 var salutation;
 return salutation = 'Hi!';
}).call(this);

Here you can see how CoffeeScript has wrapped the function definition in its
own scope.

There are, however, certain cases where you would want a variable to be available
throughout your application. Usually attaching a property to an existing global
object can do this. When you're in the browser, you can just create a property on
the global window object.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[16]

In browser-side JavaScript, the window object represents an open window. It's globally
available to all other objects and thus can be used as a global namespace or container
for other objects.

While we are on the subject of objects, let's talk about another part of JavaScript that
CoffeeScript makes much better: defining and using objects.

CoffeeScript has better object syntax
The JavaScript language has a wonderful and unique object model, but the syntax
and semantics for creating objects and inheriting from them has always been a bit
cumbersome and widely misunderstood.

CoffeeScript cleans this up in a simple and elegant syntax that does not stray too
far from idiomatic JavaScript. The following code demonstrates how CoffeeScript
compiles its class syntax into JavaScript:

CoffeeScript:

class Vehicle
 constructor: ->
 drive: (km) ->
 alert "Drove #{km} kilometres"

bus = new Vehicle()
bus.drive 5

JavaScript:

var Vehicle, bus;
Vehicle = (function() {
 function Vehicle() {}
 Vehicle.prototype.drive = function(km) {
 return alert("Drove " + km + " kilometres");
 };
 return Vehicle;
})();
bus = new Vehicle();
bus.drive(5);

In CoffeeScript, you use the class keyword to define object structures. Under the
hood, this creates a function object with function methods added to its prototype.
The constructor: operator will create a constructor function that will be called
when your object gets initialized with the new keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

All the other function methods are declared using the methodName: () -> syntax.
These are created on the prototype of the object.

Did you notice the #{km} in our alert string? This is the string
interpolation syntax, which was borrowed from Ruby. We'll talk
about this later in the chapter.

Inheritance
What about object inheritance? Although it's possible, normally this is such a pain
in JavaScript that most programmers don't even bother, or use a third-party library
with non-standard semantics.

In this example you can see how CoffeeScript makes object inheritance elegant:

CoffeeScript:

class Car extends Vehicle
 constructor: ->
 @odometer = 0
 drive: (km) ->
 @odometer += km
 super km
car = new Car
car.drive 5
car.drive 8

alert "Odometer is at #{car.odometer}"

JavaScript:

Car = (function(_super) {
 __extends(Car, _super);
 function Car() {
 this.odometer = 0;
 }
 Car.prototype.drive = function(km) {
 this.odometer += km;
 return Car.__super__.drive.call(this, km);
 };
 return Car;
})(Vehicle);

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[18]

car = new Car;
car.drive(5);
car.drive(8);
alert("Odometer is at " + car.odometer);

This example does not contain all the JavaScript code that will be generated by the
compiler, but has enough to highlight the interesting parts. The extends operator
is used to set up the inheritance chain between two objects and their constructors.
Notice how much simpler the call to the parent class becomes with super.

As you can see, @odometer was translated to this.odometer. The @ symbol is just
a shortcut for this. We'll talk about it further on in this chapter.

Overwhelmed?
The class syntax is, in my opinion, where you'll find the greatest difference between
CoffeeScript and its compiled JavaScript. However, most of the time it just works
and once you understand it you'll rarely have to worry about the details.

Extending prototypes
If you're an experienced JavaScript programmer who still likes to do all of this
yourself, you don't need to use class. CoffeeScript still provides the helpful shortcut
to get at prototypes through the :: symbol, which will be replaced by .prototype in
the generated JavaScript, as shown in the following code snippet:

CoffeeScript JavaScript

Vehicle::stop=->
alert'Stopped'

Vehicle.prototype.stop(function() {
 return alert('Stopped');
});

A few other things CoffeeScript fixes
JavaScript has lots of other small annoyances that CoffeeScript makes nicer.
Let's have a look at some of these.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Reserved words and object syntax
Often in JavaScript, you will need to make use of a reserved word, or a keyword
that is used by JavaScript. This often happens with keys for literal objects as data in
JavaScript, like class or for, which you then need to enclose in quotes. CoffeeScript
will automatically quote reserved words for you, and generally you don't even need
to worry about it.

CoffeeScript JavaScript

tag =
 type: 'label'
 name: 'nameLabel'
 for: 'name'
 class: 'label'

var tag;

tag = {
 type: 'label',
 name: 'nameLabel',
 "for": 'name',
 "class": 'label'
};

Notice that we don't need the braces to create object literals and can use indentation
here as well. While using this style, as long as there is only one property per line, we
can drop the trailing commas too.

We can also write array literals in this way:

CoffeeScript JavaScript

dwarfs = [
 "Sneezy"
 "Sleepy"
 "Dopey"
 "Doc"
 "Happy"
 "Bashful"
 "Grumpy"
]

var dwarfs;

dwarfs = ["Sneezy", "Sleepy",
"Dopey", "Doc", "Happy",
"Bashful", "Grumpy"];

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[20]

These features combined make writing JSON a breeze. Compare the following
samples to see the difference:

CoffeeScript:

"firstName": "John"
"lastName": "Smith"
"age": 25
"address":
 "streetAddress": "21 2nd Street"
 "city": "New York"
 "state": "NY"
 "postalCode": "10021"
"phoneNumber": [
 {"type": "home", "number": "212 555-1234"}
 {"type": "fax", "number": "646 555-4567"}
]

JavaScript:

({
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber": [
 {
 "type": "home",
 "number": "212 555-1234"
 }, {
 "type": "fax",
 "number": "646 555-4567"
 }
]
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

String concatenation
For a language that deals with a lot of strings, JavaScript has always been pretty bad
at building strings up from parts. Variables and expression values are often meant
to be inserted inside a string somewhere, and this is usually done by concatenation
using the + operator. If you've ever tried concatenating a couple of variables in a
string, you'll know this soon becomes burdensome and hard to read.

CoffeeScript has a built-in string interpolation syntax, which is similar to many other
scripting languages, but was specifically borrowed from Ruby. This is shown in the
following code snippet:

CoffeeScript JavaScript
greet = (name, time) ->
 "Good #{time} #{name}!"

alert (greet 'Pete', 'morning')

var greet;

greet = function(name, time) {
 return "Good " + time + " " +
name + "!";
};

alert(greet('Pete', 'morning'));

You can write any expression within #{} and its string value will be concatenated.
Note that you can only use string interpolation in double-quoted strings, "".
Single-quoted strings are literal and will be represented exactly how they are.

Equality
The equality operator == (and its inverse !=) in JavaScript is fraught with dangers,
and a lot of times doesn't do what you would expect. This is because it will first try
to coerce objects of a different type to be the same before comparing them.

It's also not transitive, meaning it might return different values of true or false
depending on if a type is on the left or right of the operator. Please refer to the
following code snippet:

'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[22]

Because of its inconsistent and strange behavior, respected members in the JavaScript
community advise avoiding it altogether and to rather use the identity operator, ===
in its place. This operator will always return false if two objects are of a different
type, which is consistent to how == works in many other languages.

CoffeeScript will always convert == to === and != to !===, as shown in the
following implementation:

CoffeeScript JavaScript

'' == '0'
0 == ''
0 == '0'
false == 'false'
false == '0'
false == undefined
false == null
null == undefined

'' === '0';
0 === '';
0 === '0';
false === 'false';
false === '0';
false === void 0;
false === null;
null === void 0;

The existential operator
When you're trying to check if a variable exists and has a value (is not null or
undefined) in JavaScript, you need to use this quirky idiom:

typeof a !== "undefined" && a !== null

CoffeeScript has a nice shortcut for this, the existential operator ?, which will return
false unless a variable is undefined or null.

CoffeeScript JavaScript

broccoli = true;
if carrots? && broccoli?
 alert 'this is healthy'

var broccoli;

broccoli = true;

if ((typeof carrots !==
"undefined" && carrots !== null)
&& (broccoli != null)) {
 alert('this is healthy');
}

In this example, since the compiler already knows that broccoli is defined, the ?
operator will only check if it has a null value, while it will check if carrots is
undefined as well as null.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

The existential operator has a method call variant: ?. or just the "soak", which
will allow you to swallow the method calls on null objects in a method chain,
as shown here:

CoffeeScript JavaScript
street = person?.
getAddress()?.street

var street, _ref;

street = typeof person !==
"undefined" && person !== null
? (_ref = person.getAddress())
!= null ? _ref.street : void 0
: void 0;

If all of the values in the chain exist, you should get the expected result. If any of
them should be null or undefined, you will get an undefined value, instead of
TypeError being thrown.

Although this is a powerful technique, it can also be easily abused and make the
code hard to reason with. If you have long method chains it may become hard to
know just exactly where the null or undefined value came from.

The Law of Demeter, a well-known object orientation design principle, can be used
to minimize this kind of complexity and improve decoupling in your code. It can be
summarized as follows:

•	 Your method can call other methods in its class directly
•	 Your method can call methods on its own fields directly (but not on

the fields' fields)
•	 When your method takes parameters, your method can call methods

on those parameters directly
•	 When your method creates local objects, that method can call methods

on the local objects

Although, this is not a "strict law" in the sense that it should never
be broken, it is more analogous to the law of nature, such that
the code that tends to follow it also tends to be much simpler and
more loosely coupled.

Now that we have spent some time going over some of the inadequacies and
annoyances of JavaScript that CoffeeScript fixes, let's dwell on some of the other
powerful features that CoffeeScript adds; some borrowed from other scripting
languages and some that are unique to the language.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[24]

List comprehensions
In CoffeeScript, looping through collections works quite differently from JavaScript's
imperative approach. CoffeeScript takes ideas from functional programming
languages and uses list comprehensions to transform lists instead of looping through
elements iteratively.

The while loop
The while loop is still present and works more or less the same, except that it can be
used as an expression, meaning it will return an array of values:

CoffeeScript:

multiplesOf = (n, times) ->
 times++
 (n * times while times -= 1 > 0).reverse()

alert (multiplesOf 5, 10)

JavaScript:

var multiplesOf;

multiplesOf = function(n, times) {
 times++;
 return ((function() {
 var _results;
 _results = [];
 while (times -= 1 > 0) {
 _results.push(n * times);
 }
 return _results;
 })()).reverse();
};

alert(multiplesOf(5, 10));

Notice that in the previous code, the while body goes in front of the condition.
This is a common idiom in CoffeeScript if the body is of only one line. You can
do the same thing with if statements and list comprehensions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

We can improve the readability of the previous code slightly by using the until
keyword, which is basically the negation of while, as shown here:

CoffeeScript:

multiplesOf = (n, times) ->
 times++
 (n * times until --times == 0).reverse()

alert (multiplesOf 5, 10)

JavaScript:

var multiplesOf;

multiplesOf = function(n, times) {
 times++;
 return ((function() {
 var _results;
 _results = [];
 while (--times !== 0) {
 _results.push(n * times);
 }
 return _results;
 })()).reverse();
};

alert(multiplesOf(5, 10));

The for statement doesn't work like it does in JavaScript. CoffeeScript replaces it
with list comprehensions, which were mostly borrowed from the Python language
and also very similar to constructs that you'll find in functional languages such as
Haskell. Comprehensions provide a more declarative way of filtering, transforming,
and aggregating collections or performing an action for each element. The best way
to illustrate them would be through some examples:

CoffeeScript:

flavors = ['chocolate', 'strawberry', 'vanilla']
alert flavor for flavor in flavors

favorites = ("#{flavor}!" for flavor in flavors when flavor !=
'vanilla')

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[26]

JavaScript:

var favorites, flavor, flavors, _i, _len;

flavors = ['chocolate', 'strawberry', 'vanilla'];

for (_i = 0, _len = flavors.length; _i < _len; _i++) {
 flavor = flavors[_i];
 alert(flavor);
}

favorites = (function() {
 var _j, _len1, _results;
 _results = [];
 for (_j = 0, _len1 = flavors.length; _j < _len1; _j++) {
 flavor = flavors[_j];
 if (flavor !== 'vanilla') {
 _results.push("" + flavor + "!");
 }
 }
 return _results;
})();

Although they are quite simple, comprehensions have a very condensed form and do
a lot in very little code. Let's break it down to its separate parts:

[action or mapping] for [selector] in [collection] when [condition]
by [step]

Comprehensions are best read from right to left, starting from the in collection.
The selector name is a temporary name that is given to each element as we iterate
through the collection. The clause in front of the for keyword describes what
you want to do with the selector name, by either calling a method with it as an
argument, selecting a property or method on it, or assigning a value.

The when and by guard clauses are optional. They describe how the iteration should
be filtered (elements will only be returned when their subsequent when condition is
true), or which parts of the collection to select using by followed by a number. For
example, by 2 will return every evenly numbered element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

We can rewrite our multiplesOf function by using by and when:

CoffeeScript:

multiplesOf = (n, times) ->
 multiples = (m for m in [0..n*times] by n)
 multiples.shift()
 multiples

alert (multiplesOf 5, 10)

JavaScript:

var multiplesOf;

multiplesOf = function(n, times) {
 var m, multiples;
 multiples = (function() {
 var _i, _ref, _results;
 _results = [];
 for (m = _i = 0, _ref = n * times; 0 <= _ref ? _i <= _ref : _i >=
_ref; m = _i += n) {
 _results.push(m);
 }
 return _results;
 })();
 multiples.shift();
 return multiples;
};

alert(multiplesOf(5, 10));

The [0..n*times] syntax is CoffeeScripts's range syntax, which was borrowed from
Ruby. It will create an array with all the elements between the first and last number.
When the range has two dots it will be inclusive, meaning the range will contain
the specified start and end element. If it has three dots (…), it will only contain the
numbers in between.

List comprehensions were one of the biggest new concepts to grasp when I started
learning CoffeeScript. They are an extremely powerful feature, but it does take some
time to get used to and think in comprehensions. Whenever you feel tempted to write
a looping construct using the lower level while, consider using a comprehension
instead. They provide just about everything you could possibly need when working
with collections, and they are extremely fast compared to built-in ECMAScript array
methods, such as .map() and .select().

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[28]

You can use comprehensions to loop through key-value pairs in an object, using the
of keyword, as shown in the following code:

CoffeeScript:

ages =
 john: 25
 peter: 26
 joan: 23

alert "#{name} is #{age} years old" for name, age of ages

JavaScript:

var age, ages, name;

ages = {
 john: 25,
 peter: 26,
 joan: 23
};

for (name in ages) {
 age = ages[name];
 alert("" + name + " is " + age + " years old");
}

Conditional clauses and logical aliases
CoffeeScript introduces some very nice logic and conditional features, some also
borrowed from other scripting languages. The unless keyword is the inverse of the
if keyword; if and unless can take the postfix form, meaning statements can go at
the end of the line.

CoffeeScript also provides plain English aliases for some of the logical operators.
They are as follows:

•	 is for ==
•	 isnt for !=
•	 not for !
•	 and for &&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

•	 or for ||
•	 true can also be yes, or on
•	 false can be no or off

Putting all this together, let's look at some code to demonstrate it:

CoffeeScript:

car.switchOff() if car.ignition is on
service(car) unless car.lastService() > 15000
wash(car) if car.isDirty()
chargeFee(car.owner) if car.make isnt "Toyota"

JavaScript:

if (car.ignition === true) {
 car.switchOff();
}

if (!(car.lastService() > 15000)) {
 service(car);
}

if (car.isDirty()) {
 wash(car);
}

if (car.make !== "Toyota") {
 chargeFee(car.owner);
}

Array slicing and splicing
CoffeeScript allows you to easily extract parts of an array using the .. and ...
notation. [n..m] will select all the elements including n and m, whereas [n…m]
will select only the elements between n and m.

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[30]

Both [..] and […] will select the whole array. These are used in the following code:

CoffeeScript JavaScript

numbers = [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

alert numbers[0..3]

alert numbers[4...7]

alert numbers[7..]

alert numbers[..]

var numbers;

numbers = [0, 1, 2, 3, 4, 5, 6,
7, 8, 9];

alert(numbers.slice(0, 4));

alert(numbers.slice(4, 7));

alert(numbers.slice(7));

alert(numbers.slice(0));

CoffeeScript sure loves its ellipses. They are used by splats, ranges, and array slices.
Here are some quick tips on how to identify them: If the … is next to the last argument
in a function definition or a function call, it's a splat. If it's enclosed in square brackets
that are not indexing an array, it's a range. If it is indexing an array, it's a slice.

Destructuring or pattern matching
Destructuring is a powerful concept that you'll find in many functional programming
languages. In essence, it allows you to pull single values from complex objects. It can
simply allow you to assign multiple values at once, or deal with functions that return
multiple values; as shown here:

CoffeeScript:

getLocation = ->
 [
 'Chigaco'
 'Illinois'
 'USA'
]

[city, state, country] = getLocation()

JavaScript:

var city, country, getLocation, state, _ref;

getLocation = function() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

 return ['Chigaco', 'Illinois', 'USA'];
};

_ref = getLocation(), city = _ref[0], state = _ref[1], country = _
ref[2];

When you run this, you get three variables, city, state, and country with values
that were assigned from the corresponding element in the array returned by the
getLocation function.

You can use destructuring to pull out values from objects and hashes as well.
There are no limits to how deeply data in the object can be nested. Here is an
example of that:

CoffeeScript:

getAddress = ->
 address:
 country: 'USA'
 state: 'Illinois'
 city: 'Chicago'
 street: 'Rush Street'

{address: {street: myStreet}} = getAddress()
alert myStreet

JavaScript:

var getAddress, myStreet;

getAddress = function() {
 return {
 address: {
 country: 'USA',
 state: 'Illinois',
 city: 'Chicago',
 street: 'Rush Street'
 }
 };
};

myStreet = getAddress().address.street;

alert(myStreet);

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[32]

In this example, the {address: {street: ---}} part describes your pattern,
basically where to find the information you need. When we put the myStreet
variable inside our pattern, we tell CoffeeScript to assign the value in that place
to myStreet. While we can use nested objects, we can also mix and match
destructuring objects and arrays, as shown in the following code:

CoffeeScript:

getAddress = ->
 address:
 country: 'USA'
 addressLines: [
 '1 Rush Street'
 'Chicago'
 'Illinois'
]

{address:
 {addressLines:
 [street, city, state]
 }
} = getAddress()
alert street

JavaScript:

var city, getAddress, state, street, _ref;

getAddress = function() {
 return {
 address: {
 country: 'USA',
 addressLines: ['1 Rush Street', 'Chicago', 'Illinois']
 }
 };
};

_ref = getAddress().address.addressLines, street = _ref[0], city =
_ref[1], state = _ref[2];

alert(street);

Here, in the previous code, we are pulling elements from the array value that we
get from addressLines and give them names.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

=> and @
In JavaScript, the value of this refers to the owner of the currently executing function,
or the object that the function is a method of. Unlike in other object-oriented languages,
JavaScript also has the notion that functions are not tightly bound to objects, meaning
that the value of this can be changed at will (or accidently). This is a very powerful
feature of the language but can also lead to confusion if used incorrectly.

In CoffeeScript, the @ symbol is a shortcut for this. Whenever the compiler sees
something like @foo, it will replace it with this.foo.

Although it's still possible to use this in CoffeeScript, it's generally frowned upon
and more idiomatic to use @ instead.

In any JavaScript function, the value of this is the object that the function is attached
to. However, when you pass functions to other functions or reattach a function to
another object, the value of this will change. Sometimes this is what you want, but
often you would like to keep the original value of this.

For this purpose, CoffeeScript provides the =>, or fat arrow, which will define a
function but at the same time capture the value of this, so that the function can
be safely called in any context. This is especially useful when using callbacks, for
instance in a jQuery event handler.

The following example will illustrate the idea:

CoffeeScript:

class Birthday
 prepare: (action) ->
 @action = action

 celebrate: () ->
 @action()

class Person
 constructor: (name) ->
 @name = name
 @birthday = new Birthday()
 @birthday.prepare () => "It's #{@name}'s birthday!"

michael = new Person "Michael"
alert michael.birthday.celebrate()

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[34]

JavaScript:

var Birthday, Person, michael;

Birthday = (function() {

 function Birthday() {}

 Birthday.prototype.prepare = function(action) {
 return this.action = action;
 };

 Birthday.prototype.celebrate = function() {
 return this.action();
 };

 return Birthday;

})();

Person = (function() {

 function Person(name) {
 var _this = this;
 this.name = name;
 this.birthday = new Birthday();
 this.birthday.prepare(function() {
 return "It's " + _this.name + "'s birthday!";
 });
 }

 return Person;

})();

michael = new Person("Michael");

alert(michael.birthday.celebrate());

Notice that the prepare function on the birthday class takes an action function
as an argument, to be called when the birthday occurs. Because we're passing this
function using the fat arrow, it will have its scope fixed to the Person object. This
means we can still refer to the @name instance variable even though it doesn't exist
on the Birthday object that runs the function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

Switch statements
In CoffeeScript, switch statements take a different form, and look a lot less like
JavaScript's Java-inspired syntax, and a lot more like Ruby's case statement. You
don't need to call break to avoid falling through to the next case condition.

They have the following form:

switch condition
 when … then …
 ….
else …

Here, else is the default case.

Like everything else in CoffeeScript, they are expressions, and this can be assigned
to a value.

Let's look at an example:

CoffeeScript:

languages = switch country
 when 'france' then 'french'
 when 'england', 'usa' then 'english'
 when 'belgium' then ['french', 'dutch']
 else 'swahili'

JavaScript:

var languages;

languages = (function() {
 switch (country) {
 case 'france':
 return 'french';
 case 'england':
 case 'usa':
 return 'english';
 case 'belgium':
 return ['french', 'dutch'];
 default:
 return 'swahili';
 }
})();

www.it-ebooks.info

http://www.it-ebooks.info/

Why CoffeeScript?

[36]

CoffeeScript doesn't force you to add a default else clause, although it is a good
programming practice to always add one, just in case.

Chained comparisons
CoffeeScript borrowed chained comparisons from Python. These basically allow
you to write greater than or less than comparisons like you would in mathematics,
as shown here:

CoffeeScript JavaScript

age = 41

alert 'middle age' if 61 >
age > 39

var age;

age = 41;

if ((61 > age && age > 39)) {
 alert('middle age');
}

Block strings, block comments, and
strings
Most programming books start with comments, and I thought I would end with
them. In CoffeeScript, single line comments start with #. The comments do not end
up in your generated output. Multiline comments start and end with ###, and they
are included in the generated JavaScript.

You can span a string over multiple lines using the """ triple quote to enclose it.

Summary
In this chapter, we started looking at CoffeeScript from JavaScript's perspective.
We saw how it can help you write shorter, cleaner, and more elegant code than
you normally would in JavaScript and avoid many of its pitfalls.

We came to realize that even though CoffeeScripts' syntax seems to be quite
different from JavaScript, it actually maps pretty closely to its generated output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Later on, we delved into some of CoffeeScripts' unique and wonderful additions, like
list comprehensions, destructuring assignment, and its class syntax, as well as many
more convenient and powerful features such as string interpolation, ranges, splats,
and array slicing.

My goal in this chapter was to convince you that CoffeeScript is a superior alternative
to JavaScript, and I have tried to do so by showing the differences between them.
Although I have previously said "it's just JavaScript", I hope that you'll appreciate
that CoffeeScript is a wonderful and modern language in its own right, with brilliant
influences from other great scripting languages.

I can still write a great deal about the beauty of the language, but I feel that we have
reached the point where we can dive into some real world CoffeeScript and get to
appreciate it "in the wild", so to speak.

So, are you ready? Let's get started then and get CoffeeScript installed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript
In this chapter, we'll talk about getting CoffeeScript installed and running on your
development environment.

CoffeeScript can easily be installed on a Mac, Windows, or Linux. There are a variety
of ways by which you can get it running, depending on if you just want the install to
be simple and straightforward or if you want to be on the bleeding edge. Before we
start on the details though, it's good to know that CoffeeScript usually doesn't live on
its own, and uses some great JavaScript tools and frameworks to do its magic. Let's
briefly discuss the typical CoffeeScript stack.

The CoffeeScript stack
Early on in CoffeeScript's history, its compiler was written in Ruby. Later on, it
became self-hosting; the language compiler was written in itself. This means that
the compiler for CoffeeScript was written in CoffeeScript code which could then
be compiled to JavaScript, which could then be run to compile CoffeeScript again.
Confusing, isn't it?

Without going any further into what a feat this is, this also means that in order
to run CoffeeScript, we need to be able to execute JavaScript standalone on your
computer, without a browser.

Node.js, or just Node, is a JavaScript framework designed for writing network-server
applications. It's built using Google's V8, an engine that can run JavaScript without
a web browser—a perfect fit for CoffeeScript. It has become the preferred way to
install CoffeeScript.

Pairing CoffeeScript with Node.js has a lot of benefits. Not only does this mean
that you can compile JavaScript that can be run in a browser, but you also get a
full-fledged JavaScript network application server framework with hundreds of
useful libraries that have been written for it.

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[40]

As with JavaScript in Node.js, you can write and execute CoffeeScript on the server,
use it to write web server applications and even use it as a normal, everyday systems
scripting language.

The core CoffeeScript compiler has no dependencies to Node
and can technically be executed on any JavaScript environment.
However, the coffee command-line utility that uses the compiler
is a Node.js package.

The working of the CoffeeScript compiler is shown in the following diagram:

Node.js and npm
Node.js has its own package management system, called npm. It's used to install
and manage packages, libraries, and their dependencies that run in the Node.js
ecosystem. It is also the most common way of installing CoffeeScript, which itself
is available as an npm package. Thus, it's actually very easy to install CoffeeScript
after you have set up Node.js and npm.

There are different ways of installing Node.js and npm, depending on your Operating
System and if you need to compile the source or not. Each of the subsequent sections
will cover the instructions for your OS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

The Node.js wiki contains a ton of information on installing and
running Node on a plethora of platforms. If you run into any
trouble during this chapter, you can look at it, since it has a lot
of tips on troubleshooting issues and is updated often; the link is
https://github.com/joyent/node/wiki/Installation.

Node.js, npm, and CoffeeScript on
Windows
There has been a great drive within the Node.js community for good native
Windows support and it is very easy to install.

To do so, first head on over to the Node.js website (nodejs.org) and then click
on the Downloads button. You'll see a couple of options available, but choose
the Windows Installer option, which is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[42]

This will download an .msi file. Once you have downloaded it, running the install
couldn't be much easier; just accept the terms and click on Continue. If you see the
following screen, then you have successfully installed Node:

At this point, you might need to log out of Windows or restart so that changes to
your $PATH variables can take effect. After you have done this, you should be able
to open the DOS command prompt and run the following:

node –v

This should spit out a version, which means you're good to go. Let's also check if
npm is working fine. Also in the command-line tool, enter the following:

npm

You should see something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Now, in order to go ahead and install CoffeeScript, just enter the following command:

npm install coffee-script

If all went well, you should see something similar to the following screenshot:

Here, I used the -g flag, which installs the npm package for all users. Once you have
installed CoffeeScript, we can test it using the coffee command, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[44]

This is the CoffeeScript interpreter, and as you can see, you can use it to run
CoffeeScript code on the fly. To exit, just use Ctrl + C.

And that's it! Installing Node.js on Windows is really quick and easy.

Installing CoffeeScript on a Mac
There are two ways of installing Node.js on a Mac, either by downloading the .pkg
file from the Node.js website and installing it using Apple's installer application, or
by using the Homebrew command-line package manager.

The easiest way of getting up and running is by just installing the .pkg file, so let's
go over that first. Installing Homebrew might involve more work, but it is worth
it if you prefer working on the command-line tool and would build CoffeeScript
from source.

Using the Apple installer
Head on over to the Node.js website (nodejs.org) and then click on the Downloads
button. You'll see a couple of options available, but choose the Macintosh Installer
option, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

This will download a .pkg file. Once you have downloaded it, running the install
couldn't be much easier; just choose your destination, accept the license, and click
Continue. You should choose to install it for all users by using the Install for all
users of this computer option, which is shown in the following screenshot:

If you see the following screen, then you have successfully installed Node:

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[46]

You will also have npm installed, which we'll use to install CoffeeScript. Skip to the
Installing CoffeeScript with npm section.

Using Homebrew
A lot of developers prefer working on the command-line tool on a Mac, and the
Homebrew package manager has become quite popular. It aims to let you easily
install Unix tools that don't come with Mac OS X.

If you prefer installing Node.js using Homebrew, you need to have Homebrew on
your system. You might also need to have XCode command-line tools to build the
Node.js source code. The Homebrew wiki contains instructions on how to get it up
and running at https://github.com/mxcl/homebrew/wiki/installation.

If you do have Homebrew installed, you can then install Node.js using the brew
command, as shown in the following screenshot:

As you can see from the output, Homebrew has not installed npm, without which we
cannot install CoffeeScript. To install npm, you can just copy and paste the following
command in the terminal:

curl http://npmjs.org/install.sh |sh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

After npm is installed, you should see something similar to the following screen:

Installing CoffeeScript with npm
Now that we have npm installed, we should be able to install CoffeeScript. Just enter
the following command in the terminal:

npm install –g coffee-script

The -g flag lets npm install CoffeeScript globally; once this is done, you can now
test if CoffeeScript is working by using the coffee command, as shown in the
following screenshot:

And that's it! Installing CoffeeScript on a Mac is quite easy.

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[48]

Installing CoffeeScript on Linux
The ways of installing Node.js with CoffeeScript on Linux vary depending on which
distribution you have installed. There are packages for most of the popular distros,
and if not, you can also try building CoffeeScript from a source, as described in the
next section.

I only have experience with package managers for Debian-based distros and
have installed CoffeeScript with Node.js successfully using the apt-get package
manager. However, you should be able to follow the instructions for the other
distros as described.

There are apt-get packages for Node.js on Ubuntu, MintOS, and Debian, but you
need to add sources for them before you can install. The instructions for installing
each of them will be explored in the following sections.

Ubuntu and MintOS
Enter the following on the command-line utility (you might need to have sufficient
permissions to use sudo):

sudo apt-get install python-software-properties

sudo apt-add-repository ppa:chris-lea/node.js

sudo apt-get update

sudo apt-get install nodejs npm

Debian
On Debian, you would normally log in to a root terminal to install packages. Once
logged in, enter the following command:

echo deb http://ftp.us.debian.org/debian/ sid main > /etc/apt/sources.
list.d/sid.list

apt-get update

apt-get install nodejs npm

Other distributions
The Node.js wiki page at https://github.com/joyent/node/wiki/Installing-
Node.js-via-package-manager contains instructions for installing on a variety of
Linux and Unix distributions, including Fedora, openSUSE, Arch Linux, and FreeDSB.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Installing CoffeeScript with npm
After your package manager has done its thing, you should now have Node.js and
npm installed. You can verify this by using the npm -v command. You can now
install CoffeeScript using npm by entering the following command:

npm install –g coffee-script

The -g flag tells npm to install the package globally.

The following screenshot shows how the -v command is used to install CoffeeScript:

And that's it! Installing CoffeeScript on Linux is quite easy.

Building Node.js from source
If you prefer not to use a package manager or installer, or don't have one available
for your OS, or you would like to get the very latest version of Node.js, then you can
also build Node.js from its source. Be warned though, this process is often fraught
with danger, since the source often needs some dependencies on the system to build.

Building on Linux or Unix
To build on a Linux or Unix environment, you need to make sure that you have the
following source dependencies installed:

•	 Python–Version 2.6 or Version 2.7: You can check if you have Python
installed and also check which version is installed by entering python
--version in the command prompt.

•	 libssl-dev: This can usually be installed with the built-in package manager.
It's already installed on OS X.

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[50]

I'm going to show you how to build Node.js using its latest source. The source is
managed using the popular Git version control system and hosted in a repository
on github.com. To pull the latest source from your github, you'll need to make
sure you have Git installed. By using apt-get, you can install it as such:

apt-get install git-core

Once you have these prerequisites, you should be able to build the node. Enter the
following command on the command-line tool:

git clone https://github.com/joyent/node.git

cd node

git checkout v0.6.19

./configure

make

sudo make install

Phew! If everything went well, you should be able to install CoffeeScript using npm:

npm install –g coffee-script

Building on Windows
Although it's possible to build Node.js on Windows, I would highly recommend
that you just run the installer instead. Out of all the ways of installing that I have
mentioned in this book, this is the only one I didn't do myself. This example
comes straight from the Node wiki (https://github.com/joyent/node/wiki/
Installation). Apparently, the build can take a very long time. In the command
prompt, enter the following:

C:\Users\ryan>tar -zxf node-v0.6.5.tar.gz

C:\Users\ryan>cd node-v0.6.5

C:\Users\ryan\node-v0.6.5>vcbuild.bat release

C:\Users\ryan\node-v0.6.5>Release\node.exe

> process.versions

{ node: '0.6.5',

 v8: '3.6.6.11',

 ares: '1.7.5-DEV',

 uv: '0.6',

 openssl: '0.9.8r' }

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

Using CoffeeScript
And there you have it. Having to install Node.js and npm just to get CoffeeScript
might seem like a lot of effort, but you'll get to experience the power of having a
wonderful server-side JavaScript framework and good command-line tools to
write CoffeeScript with.

Now that you have CoffeeScript installed, how do we go about using it? Your
main entry point into the language is the coffee command.

The coffee command
This command-line utility is like a Swiss army knife of CoffeeScript. You can use it to
run CoffeeScript in an interactive fashion, compile CoffeeScript files into JavaScript
files, execute .coffee files, watch files or directories, and compile if any of the files
change, as well as a few other useful things. Executing the command is easy, just
enter coffee along with some options and arguments for them.

For help on all the available options, run coffee with the -h or --help options.
A list of useful options are shown in the following screenshot:

We have already seen the -v option, which will print out the current version
of CoffeeScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[52]

The REPL
Executing coffee with no arguments or the -i option will drop you into the
CoffeeScript Read Eval Print Loop (REPL). From here, you can type in CoffeeScript
code that will be executed on the fly and display its output right in the console. This
is very useful for playing with the language, exploring some of the core JavaScript
and Node.js libraries, or even pulling in another external library or API and being
able to explore it interactively.

I urge you to run the coffee REPL and try some of the code examples that we
discussed in the previous chapter. Notice how the output of each expression
is displayed after it is entered. The interpreter is also clever enough to handle
multiline and nested expressions, such as function definitions.

In the previous screenshot, the interpreter is shown handling a function definition.

To exit from the REPL, use Ctrl + D or Ctrl + C.

Running .coffee files
After typing enough code into the REPL, you will come to a point when you will
want to start storing and organizing your CoffeeScript in source files. CoffeeScript
files use the .coffee extension. You can run a .coffee file by passing it as an
argument to the coffee command. The CoffeeScript in the file will be compiled
to JavaScript and then executed, using Node.js as its environment.

You can use any text editor to write your CoffeeScript. A lot
of popular editors have plugins or have added support for
CoffeeScript, with features such as syntax highlighting, code
completion, or even allowing you to run your code right from
the editor. There is a comprehensive list of text editors and
plugins that support CoffeeScript at https://github.com/
jashkenas/coffee-script/wiki/Text-editor-plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

Compiling to JavaScript
To compile a CoffeeScript to JavaScript, we pass the -c or --compile option. It takes
either a single argument with a filename or a folder name, or multiple files and folder
names. If you specify a folder, it will compile all the files in that folder. By default,
the JavaScript output files will have the same name as the source file, so foo.coffee
will compile to foo.js.

If we wanted to control where the outputted JavaScript will be written, then we can
use the -o or --output option with a folder name. If you're specifying multiple files or
folders, then you can also pass the -j or --join option with a filename. This will join
the output into a single JavaScript file.

Watching
If you're developing a CoffeeScript application, it can become tedious to
keep running --compile. Another useful option is -w or --watch. This tells the
CoffeeScript compiler to keep running and watch a certain file or folder for any
changes to the files. This works well when combined with --compile, which will
compile files every time they change.

Putting it all together
The cool thing about the coffee command is that the flags can be combined to
create a very useful build and development environment. Let's say, I have a bunch
of CoffeeScript files in a source folder that I want to compile to a single output.js
file in the js folder every time a file changes.

You should be able to use something similar to the following command:

coffee –o js/ -j output.js –cw source/

This will watch for any changes to the .coffee files in the source folder and compile
and join them into a single file called output.js inside the js folder, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Running CoffeeScript

[54]

Summary
In this chapter, you have hopefully learned how to get CoffeeScript running on
the development environment of your choice. You have also learned how to use
the coffee command to run and compile CoffeeScript. Now that you have the
tools, we'll move to writing some code and get to know CoffeeScript "in the wild",
so to speak. Let's start from where JavaScript started, and look at programming
CoffeeScript in the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery
jQuery is a cross-browser compatible library designed to simplify the life of an
HTML application developer. It was first released by John Resig in 2006 and has
since become the most popular JavaScript library in the world, and is used in
millions of websites.

Why did it become so popular? Well, jQuery has a couple of nice features like
easy DOM manipulation and querying, event handling, and animation, as well
as AJAX support. All these combined together makes programming against the
DOM and programming in JavaScript much better.

The library has also been highly optimized in terms of cross-browser compatibility
and speed and thus using jQuery's DOM traversal and manipulation functions not
only save you from writing tedious code, but it's also usually much faster than the
code that you could write yourself.

As it turns out, jQuery and CoffeeScript go very well together, and when
combined, provides a powerful toolset to write web applications in a succinct
and expressive manner.

In this chapter, we'll do the following:

•	 Explore some of the high level features of jQuery and talk about what
it gives you

•	 Learn how to use CoffeeScript and jQuery in the browser
•	 Build a simple to-do list app using jQuery and CoffeeScript

Let's start by discussing the jQuery library in more detail, and discover what
makes it so useful.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[56]

Finding and changing elements
In web browsers, the DOM, or Document Object Model, is the representation of
the elements in an HTML document used to interact with programmatically.

In JavaScript, you'll find yourself doing a lot of DOM traversal to find elements
that you're interested in and then manipulate them.

To accomplish this using just the standard JavaScript libraries, you'll usually
need to use a combination of the document.getElementsByName, document.
getElementById, and document.getElementsById methods. As soon as your
HTML structure starts getting complex, this usually means that you would have
to combine these methods in an awkward and cumbersome iteration code.

Code written in this fashion usually makes a lot of assumptions about the structure
of your HTML, which means that it will usually break if the HTML changes.

The $ function
With jQuery, a lot of this imperative style code becomes much simpler with the
$ function—jQuery's factory method (a method that creates instances of jQuery
classes) and the entry point into most of the library.

This function usually takes a CSS selector string as an argument, which can be
used to select one or multiple elements according to their element name, ID, class
attribute, or other attribute values. This method will return a jQuery object that
contains one or more elements that matches the selector.

Here, we'll select all the input tags in a document with a class of address, using
the $ function:

$('input .address')

You can then manipulate or interrogate these elements using a multitude of
functions, often called commands. The following are just a few of the common
jQuery commands and what they are used for:

•	 addClass: This adds a CSS class to an element
•	 removeClass: This removes a CSS class from an element
•	 attr: This gets a attribute from an element
•	 hasClass: This checks for the existence of a CSS class on an element
•	 html: This gets or sets the HTML text of an element
•	 val: This gets or sets the element value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

•	 show: This displays an element
•	 hide: This hides an element
•	 parent: This gets the parent of an element
•	 appendTo: This appends a child element
•	 fadeIn: This fades in an element
•	 fadeout: This fades out an element

Most of the commands return a jQuery object that can be used to chain other
commands onto them. By chaining commands, you can use the output of one
command as the input of the next. This powerful technique lets you write very
short and succinct transformations on parts of the HTML document.

Let's say that we want to highlight and enable all the address inputs in an HTML
form; jQuery allows us to do something similar to this:

$('input .address').addClass('highlighted').removeAttr('disabled')

Here, we once again select all the input tags with an address class. We add the
highlighted class to each using the addClass command, and then remove the
disabled attribute by chaining a call to the removeAttr command.

Utility functions
jQuery also comes with a host of utility functions that generally improves your
day-to-day JavaScript programming experience. These are all in the form of methods
on the global jQuery object like this: $.methodName. For instance, one of the most
widely used utilities is the each method, that can be used to iterate over arrays or
objects, and would be called as follows (in CoffeeScript):

$.each [1, 2, 3, 4], (index, value) -> alert(index + ' is ' + value)

 jQuery's utility methods range from array and collection helper methods, time
and string manipulation, as well as a host of other useful JavaScript and browser
related functions. A lot of these functions stem from the everyday needs of a lot
of JavaScript programmers.

Often, you'll find a function that applies to a common problem or pattern you face
yourself when writing JavaScript or CoffeeScript. You can find a detailed list of the
functions at http://api.jquery.com/category/utilities/.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[58]

Ajax methods
jQuery provides the $.ajax method to perform Ajax requests that work across
browsers. Traditionally, this has been a pain to do, since browsers all implemented
different interfaces for handling Ajax. jQuery takes care of all of that and provides
a simpler, callback-based way of constructing and executing Ajax requests. This
means that you can declaratively specify how the Ajax call should be made and
then provide functions that jQuery will call back when the request succeeds or fails.

Using jQuery
Using jQuery in the browser is very simple; you just need to include the jQuery
library in your HTML file. You can either download the latest version of jQuery
from their site (http://docs.jquery.com/Downloading_jQuery) and reference
that, or you can directly link to a Content Delivery Network (CDN) version of
the library.

Following is an example of how you might do it. This snippet comes from the
excellent HTML5 Boilerplate project (http://html5boilerplate.com/). Here we
include the latest minified jQuery from a Google CDN, but we will also include a
local version if including from the CDN fails.

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js"></script>
 <script>window.jQuery || document.write('<script src="js/lib/
jquery-1.7.2.min.js"><\/script>')
</script>

Using CoffeeScript and jQuery in the
browser
Before we can start playing with jQuery and CoffeeScript, let's talk about how you
go about writing CoffeeScript code that runs in the browser.

Compiling CoffeeScript
The most common way of compiling CoffeeScript for a web application is to run the
coffee command to watch one or more CoffeeScript files for changes and then to
compile them to JavaScript. The output will then be included in your web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

As an example, we'll organize our project folder structure to look something like the
following folder structure:

'

The src folder is where your CoffeeScript files would go. We could then start
a CoffeeScript compiler to watch that folder and compile the JavaScript to our
public/js folder.

This is what the CoffeeScript command would look like:

coffee -co public/js -w src/

Keep this command running in the background in its own terminal window
and it will recompile your CoffeeScript files when you save them.

CoffeeScript tags
Another way of running CoffeeScript in the browser is to include
CoffeeScript inline in the document enclosed in the <script
type="text/coffeescript"> tag and then to include the minified
CoffeeScript compiler script (coffee-script.js) in your document.
This will compile, and then run all the inline CoffeeScript in the page.
This isn't meant for serious use, since you will pay a serious
performance penalty for the compiling step each time the page is
loaded. However, it can be quite useful from time to time to just
quickly play around with some CoffeeScript in the browser without
setting up a complete compiler chain.

jQuery and CoffeeScript
Let's put something in our CoffeeScript file to see if we can successfully hook it
up with jQuery. In the src folder, create a file named app.coffee and include
the following code:

$ -> alert "It works!"

This sets up the jQuery's $(document).ready() function that will be called when
the application is initialized. Here we are using the shorthand syntax for it, by just
passing an anonymous function to the $ function.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[60]

You should now have an app.js file in the public/js folder with content similar
to this:

// Generated by CoffeeScript 1.3.3
(function() {
 alert('It works!');
}).call(this);

Lastly, we need to include this file as well as the jQuery in our application's HTML
file. In the public/index.html file, add the following code:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title>jQuery and CoffeeScript Todo</title>
 <link rel="stylesheet" href="css/styles.css">
</head>
<body>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/
jquery.min.js"></script>
 <script src="js/app.js"></script>
</body>
</html>

The preceding code creates our HTML skeleton, and includes jQuery (using the
Google CDN) as well as our application code.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/ support and register to have the files e-mailed directly to you.

Testing it all
We should now be able to run our application by opening our index.html file in a
browser. If all went well, we should see our alert pop-up window, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Running a local web server
While we can easily test our web application from the disk for now, we might want
to host it on a local web server soon, especially if we wanted to start doing Ajax.
Since we already have Node.js installed, it should be really easy to run a web server,
for which we only need to serve static content for now. Luckily, there is an npm
package that will do just that for us; it is named http-server and can be found at
https://github.com/nodeapps/http-server.

To install it, just run the following command:

npm install http-server -g

And then, we execute it by navigating to our application folder and entering this:

http-server

This will host all the files in the public folder on port 8080. We should now be able
to navigate to our hosted site by using the URL http://localhost:8080/.

Our application
In the rest of this chapter, we will be building a jQuery application using
CoffeeScript. The application is a to-do list app, which can be used to keep
track of your daily tasks and how you completed them.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[62]

TodoMVC
I have modeled a lot of the application on some of the TodoMVC project's source
code, which is in the public domain. This project is a showcase of different JavaScript
MVC frameworks all used to build the same application, and can be very useful
when evaluating frameworks. If you wanted to check it out, it can be found at
http://addyosmani.github.com/todomvc/.

MVC, or Model–view–controller, is a widely used application
architecture pattern that aims to simplify code and reduce
coupling by splitting application concerns into three domain
object types. We'll talk about MVC a bit more later on in the book.

We will mostly base our application on the TodoMVC project to get the awesome-
looking stylesheets that come with it as well as a well-designed HTML5 structure.
However, most of the client-side JavaScript will be rewritten in CoffeeScript and it
will be simplified and modified quite a lot for illustration purposes.

So without further ado, let's get to it!

Our initial HTML
First, we'll add some HTML that will allow us to enter to-do items and view a list of
existing items. In index.html, add the following code to the body tag, right before
the included script tags:

<section id="todoapp">
 <header id="header">
 <h1>todos</h1>
 <input id="new-todo" placeholder="What needs to be done?"
autofocus>
 </header>
 <section id="main">
 <ul id="todo-list">
 </section>
 <footer id="footer">
 <button id="clear-completed">Clear completed</button>
 </footer>
 </section>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Let's briefly walk through the structure of the preceding markup. First, we have a
section with the todoapp ID, that will serve as the main part of the app. It consists
of a header tag, which will house our input for creating new items, a main section,
which will list all our to-do items, and a footer section that will have the Clear
completed button. Before we open this page in the browser, let's remove the
previous alert line from our app.coffee file.

When you navigate to this page, it won't look like much. That is because our HTML
hasn't been styled at all. Download the styles.css file for this chapter and copy it
to the public/css folder. It should now look much better.

Initializing our app
Most jQuery apps, including ours, follow a similar pattern. We create a $(document).
ready handler which in turn performs page initialization, usually including hooking
up event handlers for user actions. Let's do this in our app.coffee file.

class TodoApp
 constructor: ->
 @bindEvents()

 bindEvents: ->
 alert 'binding events'

$ ->
 app = new TodoApp()

Here, in the previous code snippet, we create a class called TodoApp that will
represent our application. It has a constructor that calls the bindEvents method,
which for now just displays an alert message.

We set up jQuery's $(document).ready event handler to create an instance of
our TodoApp. When you reload the page, you should see the binding events
alert pop-up window.

Not seeing the expected output?
Remember to keep an eye on the output of the coffee compiler
running in the background. If you have made any syntax errors, then
the compiler will spit out an error message. Once you have fixed it,
the compiler should recompile your new JavaScript file. Remember
that CoffeeScript is whitespace sensitive. If you come across any
errors that you don't understand, check your indentation carefully.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[64]

Adding a to-do item
Now we can add the event handling to actually add a to-do item to the list. In our
bindEvents function, we'll select the new-todo input and handle its keyup event.
We bind that to call the create method on our class, which we'll also go and define;
this is shown in the following code snippet:

 bindEvents: ->
 $('#new-todo').on('keyup', @create)

 create: (e) ->
 $input = $(this)
 val = ($.trim $input.val())
 return unless e.which == 13 and val
 alert val
 # We create the todo item

The $('#new-todo') function uses the jQuery CSS selector syntax to get the input
with the new-todo ID, the on method binds the create method to its 'keyup' event,
which fires whenever a key is pressed while the input has focus.

In the create function, we can get a reference to the input by using the $(this)
function, which will always return the element that generated the event. We assign
this to the $input variable. Using variable names that are prefixed with $ is a
common convention when assigning jQuery variables. We can then get the value of
the input using the val() function and assign it a local val variable.

We can see if the Enter key was pressed by checking if the which property of the
keyup event is equal to 13. If so, and if the val variable is not null, we can go ahead
and create the to-do item. For now, we'll just output its value using an alert message.

Once we create the item, where shall we put it? In lots of traditional web apps, this
data will typically be stored on the server using an Ajax request. We would like to
keep this app simple for now and just keep these items around on the client side
for now. The HTML5 specification defines a mechanism for us called localStorage,
to do just that.

Using localStorage
localStorage is part of the new HTML5 specification and allows you to store and
retrieve objects in a local database that lives in the browser. The interface is quite
simple; in supported browsers a global variable named localStorage will be
present. This variable has the following three important methods:

localStorage.setItem(key, value)
localStorage.getItem(key)
localStorage.removeItem(key)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Both the key and value parameters are strings. Strings stored in the localStorage
variable hang around even when the page is refreshed. You can store up to 5 MB in
the localStorage variable in most browsers.

Because we want to store the to-do items as a complex object rather than a string,
we use the commonly used technique of converting to and from a JSON object
when setting and getting items from localStorage. To do so, we'll add two
methods to the prototype of the Storage class, which will then be available on
the global localStorage object. Add the following code snippet to the top of
our app.coffee file:

Storage::setObj = (key, obj) ->
 @setItem key, JSON.stringify(obj)

Storage::getObj = (key) ->
 JSON.parse @getItem(key)

Here, we use the :: operator to add the setObj and getObj methods to the Storage
class. These functions wrap the localStorage object's getItem and setItem
methods by converting the object to and from JSON.

We are now finally ready to create our to-do item and store it in localStorage.

Here is the rest of our create method:

 create: (e)->
 $input = $(this)
 val = ($.trim $input.val())
 return unless e.which == 13 and val

 randomId = (Math.floor Math.random()*999999)

 localStorage.setObj randomId,{
 id: randomId
 title: val
 completed: false
 }
 $input.val ''

In order for us to uniquely identify tasks, we'll use the simplest thing we can,
and just generate a big random number to use as an ID. This is not the most
sophisticated way of identifying documents and you should probably not use
this in a production setting. However, it's quite simple to implement, and serves
our purposes well for now.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[66]

After generating the ID, we can now put the to-do item in our local database using
our setObj method. We pass in a title that we got from the input tag value, and
default the item to not completed.

Lastly, we clear the value of $input to give the user visual input that create
was successful.

We should now be able to test our little app and see if the to-do items do get stored
into localStorage. The Google Chrome Developer Tools will allow you to inspect
localStorage in the Resources tab. After adding a couple of tasks, you should be
able to see them here, as shown in the following screenshot:

Displaying the to-do items
Now that we can store a list of to-do items, it would be nice if we could see them on
screen. To do so, we will add a displayItems method. This will iterate through the
local list of to-do items and display them.

Add the following code to our TodoApp, after the create method:

displayItems: ->
 alert 'displaying items'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Now we should be able to call this method from the create method, as highlighted
in the following code:

 create: (e) ->
 $input = $(this)
 val = ($.trim $input.val())
 return unless e.which == 13 and val

 randomId = (Math.floor Math.random()*999999)

 localStorage.setObj randomId,{
 id: randomId
 title: val
 completed: false
 }
 $input.val ''
 @displayItems()

Let's run this code to see what happens. When we do, we get the following error:

Uncaught TypeError: Object #<HTMLInputElement> has no method 'displayItems'

So what's happening here? It seems that the call to @displayItems() is trying to call
the method on an instance of HTMLInputElement instead of TodoApp.

This happens because jQuery will set the value of this to reference the element that
raised the event. When we bind a class method as an event handler, jQuery will in
essence "highjack" this to not point to the class itself. It is an important caveat that
you should know of when working with jQuery and classes in CoffeeScript.

To fix it, we can use the CoffeeScript fat arrow when we set up the keyup event
handler, which will ensure that the value of this remains intact. Let's modify our
bindEvents method to look similar to the following code:

 bindEvents: ->
 $('#new-todo').on('keyup',(e) => @create(e))

There is just one more thing though; in our createItem method, we used $(this)
to get the value of the input element that raised the event. Since switching to the
fat arrow, this will now be pointing to our TodoApp instance. Luckily, the event
argument that gets passed in has a target property that also points to our input.
Change the first line of the create method similar to the following code snippet:

 create: (e) ->
 $input = $(e.target)
 val = ($.trim $input.val())

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[68]

Now when we create an item, we should see the "displaying items" alert, meaning
the displayItems method has been hooked up correctly.

We can do one better. Since the $input tag will need to be looked up every time the
create method is fired, we can just store it in a class variable so that it can be re-used.

The best place for this would be right when the app starts up. Let's create a
cacheElements method that does just that, and gets called in the constructor—this is
highlighted in the following code:

class TodoApp

 constructor: ->
 @cacheElements()
 @bindEvents()

 cacheElements: ->
 @$input = $('#new-todo')

 bindEvents: ->
 @$input.on('keyup',(e) => @create(e))

 create: (e) ->
 val = ($.trim @$input.val())
 return unless e.which == 13 and val

 randomId = (Math.floor Math.random()*999999)

 localStorage.setObj randomId,{
 id: randomId
 title: val
 completed: false
 }
 @$input.val ''
 @displayItems()

The cacheElements call assigns a class variable called @$input, which is then used
throughout our class. This @$ syntax might look strange at first, but it does convey a
lot of information in a few keystrokes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Showing the to-do items
We should now be able to show the items. In the displayItems method, we'll iterate
through all the localStorage keys and use them to get each corresponding to-do
item. For each item we'll add a li child element to the ul element with the todo-
list ID. Before we start working with the $('#todo-list') element, let's cache its
value like we did with @$input:

 cacheElements: ->
 @$input = $('#new-todo')
 @$todoList = $('#todo-list')
 displayItems: ->
 @clearItems()
 @addItem(localStorage.getObj(id)) for id in Object.
keys(localStorage)

 clearItems: ->
 @$todoList.empty()

 addItem: (item) ->
 html = """
 <li #{if item.completed then 'class="completed"' else ''} data-
id="#{item.id}">
 <div class="view">
 <input class="toggle" type="checkbox" #{if item.completed
then 'checked' else ''}>
 <label>#{item.title}</label>
 <button class="destroy"></button>
 </div>

 """
 @$todoList.append(html)

Here, we have modified the displayItems method a bit. First, we remove any existing
child list items from $@todoList, then we loop through each key in localStorage, get
the object with that key, and send that item to the addItem method.

The addItem method builds an HTML string representation of a to-do item and then
uses jQuery's append function to append a child element to $@todoList. Together
with a label for the title, we also create a checkbox to set the task as completed and a
button to remove the task.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and jQuery

[70]

Notice the data-id attribute on the li element. This is an HTML5 data attribute,
which lets you add arbitrary data attributes to any element. We will use this to link
each li to its to-do item in the localStorage object.

Although CoffeeScript can make building HTML strings like these a
bit easier, it can quickly become cumbersome to define markup within
your client-side code. We have done so here mostly for illustration
purposes; it's probably better to use a JavaScript templating library,
such as Handlebars (http://handlebarsjs.com/).
These types of libraries allow you define templates within your markup
and then compile them with a specific context, which then gives you a
nicely formatted HTML that you can then append to the elements.

One last thing, now that we can display items after one is created, let's add the
displayItems call to the constructor, so that we can display existing to-do items;
this call is highlighted in the following code:

 constructor: ->
 @cacheElements()
 @bindEvents()
 @displayItems()

Removing and completing items
Let's hook up the remove task button. We add an event handler for it follows:

 bindEvents: ->
 @$input.on('keyup',(e) => @create(e))
 @$todoList.on('click', '.destroy', (e) => @destroy(e.target))

Here, we handle click events on any child element on @$todoList with a
.destroy class.

We once again create the handler with the fat arrow, calling a @destroy method and
passing in the target, which should be the destroy button that was clicked.

We now need to create the @destroy method using the following code snippet:

 destroy: (elem) ->
 id = $(elem).closest('li').data('id')
 localStorage.removeItem(id)
 @displayItems()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

The closest function will find the li element that is defined nearest to the button
itself. We use jQuery's data function to retrieve its data-id attribute, which we can
then use to remove the to-do item from localStorage. One more call is made to @
displayItems to refresh the view.

Completing an item will follow a very similar pattern; that is, we add an event
handler, which is highlighted in the following code:

 bindEvents: ->
 @$input.on('keyup',(e) => @create(e))
 @$todoList.on('click', '.destroy', (e) => @destroy(e.target))
 @$todoList.on('change', '.toggle', (e) => @toggle(e.target))

This time we handle the 'change' event, which will fire whenever a completed
checkbox is checked or unchecked. This in turn will call the @toggle method, which
is coded as follows:

 toggle: (elem) ->
 id = $(elem).closest('li').data('id')
 item = localStorage.getObj(id)
 item.completed = !item.completed
 localStorage.setObj(id, item)

This method also uses the closest function to get the ID of the to-do item. It loads
up the object from localStorage, toggles the value of completed, and then saves it
back to localStorage using the setObj method.

Now, it's your turn!
As a final exercise for you, I will ask you to make the Clear completed button work.

Summary
In this chapter, we learned what jQuery is, and what its strengths and benefits are.
We also learned how to combine the powerful features of jQuery with CoffeeScript to
write complex web applications with much less effort and complexity. jQuery is a very
large library and we have just scratched the surface of what it has to offer. I urge you to
spend some more time learning the library itself, and to do so using CoffeeScript.

Next up, we'll start by having a look at how you would start interacting with
sever-side code using CoffeeScript and Rails.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails
Ruby on Rails is a web framework that came around in 2004. It was written by David
Heinemeier Hansson and was extracted as a framework from Basecamp, a project
management web application he had written in Ruby for his company 37signals.

Rails immediately impressed a lot of people by how effortlessly and quickly one
could go about writing web applications and soon became quite popular.

At the time it was developed, Ruby was an obscure scripting language from Japan
that no one had really heard of. Ruby was really at the heart of why Rails was so
successful. It has proved to be a powerful and succinct programming language,
and many programmers have stated that it makes programming fun again.

What makes Rails special?
Rails has pushed the envelope on how web developers approach writing applications.
Its core philosophy consists of the following two important principles:

•	 Convention over configuration
•	 Don't repeat yourself, or DRY

Convention over configuration
Rails is designed to assume that the programmer will follow certain known
conventions, which if used, provide great benefit and much less need to configure
the framework. It's often called an opinionated framework. That means that the
framework makes assumptions on how a typical application should be built and
structured and it doesn't try to be overly flexible and configurable. This helps you
spend less time on mundane tasks like configuring and wiring up an application
architecture and more time on actually building your app.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[74]

For instance, Rails will model tables in your database with objects corresponding
to their names, so a record in the Transactions database will automatically map
to a Transactions class instance, as will a record in the people database table
automatically map to a Person class instance.

Rails will generally use conventions to do smart things for you. Let's say our people
table also has a datetime field called created_at and updated_at. Rails will be
smart enough to now automatically update the timestamps on these two fields when
a record gets created or updated.

The most important thing about Rails' conventions is that you should know about
them and not fight the framework, or try to diverge too much from the Rails way,
without good reason. Often, this can cancel out any of the benefits you get from
these conventions, or even make it harder on yourself to try and find workarounds.

Don't repeat yourself (DRY)
This software engineering principle can also be stated as follows:

Every piece of knowledge must have a single, unambiguous, and authoritative
representation within a system.

This means that Rails strives to remove duplication and boilerplate wherever it can.

For instance, a Person class that models records in the people table will not need
to define its fields, since they are already defined as columns in your database table.
Here, Rails can use the powerful metaprogramming capabilities of Ruby to magically
add attributes to the Person class that correspond to columns in your database.

Metaprogramming is the concept of writing code that acts on other
code as data structures. In other words, metaprogramming is writing
code that writes code. It is used heavily in the Ruby community and
the Rails source code in particular.
The Ruby language has very powerful metaprogramming abilities
that are tied to the concept of open classes and objects, meaning that
you can easily "open up" an existing class definition and redefine
and add members to it.

Rails and JavaScript
For a long time, Rails was shipped with the Prototype.js and Script.aculo.us
JavaScript libraries for AJAX, page animation, and effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

Rails has the concept of view helpers—these are Ruby methods that can be used in
views to abstract away common HTML constructs. Many of the view helpers that
deal with client-side code and AJAX were built on top of these two frameworks,
and thus they were completely baked in the framework without an easy way of
using alternatives.

Prototype.js shares many of the same ideas and goals as jQuery, but over time,
jQuery has grown to be perceived as a more elegant and powerful library by
many programmers.

As jQuery became more popular, many developers in the Rails community started
experimenting by using jQuery with Rails instead of the default JavaScript libraries.
A standard set of libraries or gems emerged for replacing the built-in Prototype
library with jQuery.

In Rails Version 3.1, it was announced that jQuery will be the default JavaScript
library. Because jQuery already had most of the animation and page effect features
of Script.aculo.us, this library was also not needed anymore.

This move seemed to have been a long time coming and generally had the blessings
of most of the Rails community.

Rails and CoffeeScript
Another big addition to Rails 3.1 was the asset pipeline. Its main goal is to make it
easy to treat assets such as JavaScript and CSS as first-class citizens in your Rails app.
Prior to this, JavaScript and CSS were just served as static content. It also provides
an organizational skeleton that helps you to organize your JavaScript and CSS and
provides a DSL for accessing them.

With the asset pipeline, you can organize and manage dependencies between assets
using manifest files. Rails will also use the pipeline to minify and concatenate
JavaScript as well as apply fingerprints for cache busting.

The asset pipeline also has a pre-processor chain that will allow you to run files
through a series of input-output processors before they are served. It knows
which pre-processors to run using file extension names.

Before Rails 3.1 was released, it was announced that the CoffeeScript compiler
would be supported out of the box using the asset pipeline. This was a huge
announcement since CoffeeScript is still quite a young language and it stoked
quite some controversy within the Rails community, with some lamenting the
fact that they didn't want to learn or use this new language.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[76]

The Rails maintainers have stuck to their guns though, and at present it couldn't be
easier to use CoffeeScript in Rails. The fact that CoffeeScript is the default for writing
client-side JavaScript code has been a huge boost for CoffeeScript, and a lot of Rails
developers have since gotten to know and embraced the language.

We've been going on about how wonderful Rails is and how well it works with
CoffeeScript, so let's get Rails installed so that you can see for yourself what all the
fuss is about.

Installing Rails
There are many different ways of installing Ruby and Rails on your development
machine depending on your operating system, which version of Ruby you would
like to use, if you're using version managers, building from source, and dozens of
other options. In this book, we will only briefly cover the most common ways of
installing it on Windows, Mac, and Linux. Please note that in this book we'll be
using a Rails version of at least 3.2 and higher and Ruby 1.9.2 and higher.

Installing Rails using RailsInstaller
On Windows, or optionally on a Mac, I would recommend RailsInstaller
(http://railsinstaller.org/). It contains everything you need to start with
Rails, including the latest version of Ruby itself. After downloading the setup
program, installation couldn't be much easier; just run it and step through the
wizard. After the installation, you should be presented with an open console
command prompt. Try entering rails -v. If you see a version number, you
should be good to go.

Installing Rails using RVM
Installing Ruby and Rails on a Mac and Linux can be really easy using RVM,
or the Ruby Version Manager, from https://rvm.io/.

The Ruby language has grown to be very popular over the past few years, and
this has resulted in multiple implementations of the language being written,
which can run on difference platforms. Matz's Ruby Interpreter (MRI), the
standard implementation of Ruby, has also gone through several versions.
RVM is great for managing and installing different versions of Ruby. It comes
with a one-stop installer bash script that will install both the latest Ruby and
Rails. Just run the following command from the terminal:

curl -L https://get.rvm.io | bash -s stable --rails

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

This might take quite a while to finish. Once it's done, you should try entering
rails -v in the terminal. If you see a version number of at least 3.2, you should
be good to go.

Got Rails installed?
Now that we have Rails installed, let's go ahead and build an application
using CoffeeScript.

If you ran into any problem or want more information on installing Rails, the
best place to start would be on the Download section of the Ruby on Rails site
(http://rubyonrails.org/download).

Developing our Rails application
We'll take parts of our existing to-do list application and extend it with a server-side
backend using Rails. If you weren't following along in the previous chapter, then you
should be able to just copy the code for that chapter as needed.

This chapter isn't meant to be a complete introduction to all of Ruby on
Rails or Ruby, the language. Here, we would like to focus on building a
simple Rails app within the context of how you would go about using
Rails with CoffeeScript.
We will not go into everything in too much detail, and we'll trust in
the fact that Ruby is quite a simple and readable language and that
Rails code is simple to understand. Even if you aren't familiar with the
language and the framework, it should not be too hard to follow along.

First, we'll start out by creating an empty base Rails application using the rails
command. Navigate to a folder where you would like to create your app and then
run this command:

rails new todo

This will create a todo folder with a whole bunch of files and folders for your web
application. In Rails' spirit of following conventions, your web application will be
organized in a certain manner.

The rails command is used for many things besides generating a new
application and serves as your entry point into many of the common
day-to-day Rails tasks. We'll be covering a few of them in this book and
if you want to see the full list of what it can do, you can run rails -h.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[78]

Let's briefly talk about how Rails organizes our application. Most of your application
code will probably live in the top-level app folder. This folder contains the following
four important subfolders:

•	 assets: This is the folder from which the asset pipeline operates. This is
where all your CoffeeScript (or JavaScript) and CSS source code, as well as
images used by our web app, will be.

•	 controllers: This is where your controllers live. These are responsible for
handling routed requests for the application and they talk to your views
and models.

•	 models: This is where you'll find the domain models. Models represent
domain objects in a system and correspond to database tables using the
ActiveRecord base class.

•	 views: This folder contains view templates that are used to render your
application's HTML. By default, Rails uses ERB templates, which allow
us to include snippets of Ruby code within an HTML template that will
be evaluated to generate the final output HTML.

MVC
MVC, or Model-View-Controller, is a widely used application architecture pattern
that aims to simplify code and reduce coupling by splitting application concerns into
three domain object types.

Rails follows the MVC pattern very closely, and most Rails applications will be
structured very heavily in terms of models, controllers, and views.

Another pattern on top of MVC that has been espoused by many Rails programmers
over the last few years is fat models, skinny controllers. This concept encourages the
practice of placing most of your domain logic within models, and that controllers
should only be concerned about routing and interaction between models and views.

Running our application
At this stage we can already run our Rails application to see if it all worked. From
the terminal, enter:

cd todo

rails server

Rails will now start hosting a local web server for our application on port 3000.
You can test it by browsing to http://localhost:3000/. If all went well, then
you should see the following friendly welcome message:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Remember to keep this server running in a separate console window
as we test our application. You can also check the output of this
process for any errors that might occur while it's running.

Our todo_items resource
So, we now have a running application, but it doesn't do much except show us a
welcome page.

To get to our goal of being able to track to-do tasks, we'll generate a resource for our
to-do items. In Rails parlance, a resource consists of a model, a controller with some
actions, as well as views for those actions.

At the terminal, run the following command:

rails generate resource todo_item title:string completed:boolean

What did this do? This is an example of Rails' generator syntax, which can be used to
generate boilerplate code. Here, we tell it to create a "resourceful" controller named
TodoItemsController and a model, TodoItem, which has a string field for its title
and a boolean flag to mark it as completed.

As you can see from the command output, it has generated a bunch of files as well as
modified an existing one, in config/routes.rb. Let's start by opening this file.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[80]

routes.rb
Here is what you should see at the top of the routes.rb file:

Todo::Application.routes.draw do
 resources :todo_items

In Rails, routes.rb defines how HTTP calls to URLs map to controller actions that
can handle them.

Here, the generator added a line for us, which uses the resources method. This
method creates the routes for the most common actions of a "resourceful" controller.
This means it exposes a single domain resource in your application using the HTTP
verbs, GET, POST, PUT, and DELETE.

Usually, this will create routes for seven different controller actions, index, show,
new, create, edit, update, and destroy. As you will see later on, we won't need to
create all these actions for our controller, so we'll tell the resources method to filter
out only the ones we want. Modify the file to look like the following code snippet:

Todo::Application.routes.draw do
 resources :todo_items, only: [:index, :create, :update, :destroy]

The controller
In the call to resources, Rails uses the :todo_items symbol to conventionally map
the resources method to TodoItemsController, which was also generated for us.

Open the app/controllers/todo_items_controller.rb file; here is what
you'll see:

class TodoItemsController < ApplicationController
end

As you can see, there isn't a whole lot in here. A class named TodoItemController
is declared, and it derives from the ApplicationController class. The
ApplicationController class was also generated for us when we created the
app, and it derives from ActionController::Base, which gives it a whole lot of
functionality and lets it behave like a Rails controller.

We should now be able to test out our controller by navigating to the
http://localhost:3000/todo_items URL.

What do you see? You should get the Unknown action error page stating that the
index action could not be found for TodoItemsController.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

This is because the controller doesn't yet have an index action defined, as specified in
our routes.rb file. Let's go ahead and add a method to our TodoItemsController
class to handle that action; this is shown in the following code snippet:

class TodoItemsController < ApplicationController
 def index
 end
end

If we refresh the page, we get a different error message: Template is missing. This
happens because we don't have a template for the index action. By default, Rails will
always try to return a rendered template that corresponds to the index action name.
Let's go ahead and add one now.

The view
Rails views are saved in the app/views folder. Each controller will have a subfolder
here containing its views. We already have an index.html file from the previous
chapter, which we'll re-use here. To do this, we'll need to copy everything that is
inside the body tag, excluding the last two script tags from the old index.html
file, into a file called app/views/todo_items/index.html.erb.

You should end up with the following markup:

<section id="todoapp">
 <header id="header">
 <h1>todos</h1>
 <input id="new-todo" placeholder="What needs to be done?"
autofocus>
 </header>
 <section id="main">
 <ul id="todo-list">

 </section>
 <footer id="footer">
 <button id="clear-completed">Clear completed</button>
 </footer>
</section>

Looking at this, you might be wondering where the rest of the HTML such as the
enclosing html, head, and body tags have gone.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[82]

Well, Rails has the concept of a layout file, which acts as a wrapper for all the other
views. This way you can have a consistent skeleton for your site that you don't need
to create for each view. Our view will be embedded inside the default layout file:
app/views/layouts/application.html.erb. Let's have a look at that file:

<!DOCTYPE html>
<html>
<head>
 <title>Todo</title>
 <%= stylesheet_link_tag "application", :media => "all" %>
 <%= javascript_include_tag "application" %>
 <%= csrf_meta_tags %>
</head>
<body>

<%= yield %>

</body>
</html>

The stylesheet_link_tag and javascript_include_tag methods will make sure
that all the files specified in the assets folder are included in the HTML. The <%=
yield %> line is where the current view will be rendered, which is index.html.erb
in our case.

When we refresh the page now, we'll see the index page. Have a look at the source
code to get an idea of how the final HTML is output.

As you can see, our page is still unstyled and looks quite dull. Let's see if we can
make it look pretty again.

The CSS
By default, the asset pipeline will look for CSS files in the app/assets/stylesheets
folder. When we browse to this folder, we'll see a file named todo_items.css.scss,
which was generated for us when we created the controller.

Copy the contents of the previous chapter's styles.css file into this file. Our index
page should now look decent again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

This file with the strange .css.scss extension is a Saas file
(http://sass-lang.com/).
Like CoffeeScript, Sass is an extended version of the normal CSS
language, with a lot of nice features that make writing CSS easier
and less repetitive.
As with CoffeeScript, it is the default CSS compiler in the Rails
asset pipeline. The flavor of Sass that we're using is a superset
of CSS, which means we can use normal CSS in this file without
using any of the Sass features and it will work fine.

Our model
So now we can see our to-do list, but we don't have any items showing up. This
time, instead of storing them locally, we'll store them in the database. Luckily for us,
we already have a database model that was generated for us when we created the
resource and the TodoItem model, which is defined in app/models/todo_item.rb:

class TodoItem < ActiveRecord::Base
 attr_accessible :completed, :title
end

Here, like with controllers, you can see that Rails models get most of their
functionality by deriving from ActiveRecord::Base. The attr_accessible
line tells ActiveRecord which fields on this model can be assigned to and from
user input.

How do we use the model? Add the following highlighted code in todo_items_
controller.rb:

 def index
 @todo_items = TodoItem.all
 end

This line uses an all class method on the TodoItem class, which is also provided by
ActiveRecord. This will return a new instance of the TodoItem class for each record
in the database, which we can assign to an instance variable called @todo_items (in
Ruby all instance variables start with an @ symbol).

When Rails executes a controller action, it will automatically make any of the
controller instance variables available to the view being rendered, which is why
we're assigning it here. We'll get to use it in our view soon.

Let's refresh the page again to see if this worked. Yet again, we get a Could not find
table 'todo_items' error.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[84]

You've probably guessed that we're supposed to create a table called todo_items in
a database somewhere. Luckily, Rails has already taken care of the hard work, using
something called migration.

Migrations
When we generated our resource, Rails not only created a model for us, but also a
database script written in Ruby, or migration. We should be able to open it in the
db/migrations folder. The actual file will be prefixed with a timestamp and will end
with _create_todo_items.rb. It should look similar to the following code snippet:

class CreateTodoItems < ActiveRecord::Migration
 def change
 create_table :todo_items do |t|
 t.string :title
 t.boolean :completed

 t.timestamps
 end
 end
end

This script will create a table named todo_items with the fields that we had
specified when we generated the todo_item resource. It also creates two timestamp
fields named created_at and updated_at using the t.timestamps method. Rails
will make sure that fields with those names get updated with the appropriate
timestamp when a record gets created or updated.

Migration scripts are a wonderful way of automating database changes, even
allowing you to roll back a previous change. You don't have to rely on migrations
created by resource or model generators either. Custom migrations can be generated
by running the following command:

rails generate migration migration_name

After generating your custom migration, you can just implement the up and down
methods, which will be called when your migration gets executed or rolled back.

Migrations are executed with the rake command. rake is a task-management tool
that allows you to write tasks as Ruby scripts, which are then run using the rake
command-line utility. Rails comes with a whole lot of built-in rake tasks, and you
can see the full list of them by using:

rake –T

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

The task that we're interested in the moment is called db:migrate, let's run it and see
what happens:

rake db:migrate

You should see the following output:

== CreateTodoItems: migrating =====================================
===========

-- create_table(:todo_items)

 -> 0.0011s

== CreateTodoItems: migrated (0.0013s) ===============================
========

This means Rails has successfully created a todo_items table for us in the database.
When we refresh the application page, we should see that the error is gone and we're
seeing our blank to-do list.

Where is the database?
You might have wondered where our actual database lives at the
moment. Rails defaults to using an embedded SQLite database.
SQLite (http://www.sqlite.org) is a self-contained, file-
based database that doesn't need a server to be configured for it
to run. This makes it really nice and easy to get up and running
quickly when developing an application.
Once you actually deploy your web app, you would probably
want to go with a more traditional database server, such as
MySQL or PostgreSQL. You can easily change your database
connection settings in the config/database.yml file.

We still haven't hooked up our view to actually show the list of to-do items. Before
we do that, let's manually create a couple of to-do items in the database.

The Rails console
Rails has a nifty way of interactively playing with your code by using the Rails
console. This is an interactive Ruby interpreter, or irb, session with all the Rails
project code loaded. Let's fire it up by using the following command:

rails console

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[86]

Once you're in the console you can enter any valid Ruby code. You can also access
all the models in your Rails app. Let's try it with the TodoItem.all method that we
used earlier; this is shown in the following screenshot:

At the moment it returns an empty array, since our table is still empty. Notice that
Rails also outputted the SQL query that it has generated to get all the records.

From here we can also create a new to-do item using our model. The following code
will do that:

TodoItem.create(title: "Hook up our index view", completed: false)

Now, we should have a single to-do item in our table. You can verify this by using
TodoItem.first, which will return the first item in our table.

I want to make sure that our model always has a title. ActiveRecord has very
powerful validation features that are built-in, which allows for specifying constraints
on model attributes in a very declarative manner. Let's make sure that our model
always checks for the presence of a title before saving; to do this, add the following
highlighted code:

class TodoItem < ActiveRecord::Base
 attr_accessible :completed, :title
 validates :title, :presence => true
end

Go ahead and create a couple of other to-do items. Once you have done this, try
running TodoItem.all again. This time it returns an array of TodoItem instances.

To exit the rails console, just enter exit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

Displaying the items in our view using ERB
To display our to-do items in our view, we'll use the @todo_items instance variable
that we created in our controller action. Let's modify the app/views/todo_items.
html.erb file and mix in some Ruby using ERB; add the code that is highlighted in
the following code snippet:

<section id="todoapp">
 <header id="header">
 <h1>todos</h1>
 <input id="new-todo" placeholder="What needs to be done?"
autofocus>
 </header>
 <section id="main">
 <ul id="todo-list">
 <% @todo_items.each do |item| %>
 <li class="<%= item.completed ? "completed" : "" %>" data-
id="<%= item.id %>">
 <div class="view">
 <input class="toggle" type="checkbox" <%= "checked" if
item.completed %>>
 <label><%= item.title %></label>
 <button class="destroy"></button>
 </div>

 <% end %>

 </section>
 <footer id="footer">
 <button id="clear-completed">Clear completed</button>
 </footer>
</section>

ERB templates are quite simple to understand. The basic idea is that you write
your HTML as normal and mix in Ruby using ERB tags. The following three tags
are important:

<% These tags will be just be executed %>
<%= These should contain a Ruby expression that will be evaluated and
included in the document %>
<%# This is a comment and will be ignored %>

In our index ERB template, we use Ruby's each iterator to loop through all the
elements in the @todo_items array instance variable; each takes a Ruby block as an
argument. A block is a piece of code that can be passed to a method as data, similar
to how functions can be passed as arguments in CoffeeScript.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[88]

This block will be executed for each item in the array, passing it in as the item
variable. For each item, we create its markup, using the item's title and completed
attributes inside of our ERB tags.

When we refresh the page, we should now finally see our list of to-do items! If you
are curious, have a look at the HTML source of the document and compare it to the
ERB template, this should give you a good idea of how it was generated. The output
page is shown in the following screenshot:

Creating a partial
At the moment, our view code is starting to get a bit messy, especially the to-do
items list. We can clean it up a bit by using a view partial, which allows us to pull
out snippets of our view into a separate file. This can then be rendered where we
need it in the main view. Add the line of code highlighted in the following code
snippet to your file:

 <section id="main">
 <ul id="todo-list">
 <% @todo_items.each do |item| %>
 <%= render partial: 'todo_item', locals: {item: item} %>
 <% end %>

 </section>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

We'll move the to-do item markup to its own partial file. By convention, partial
filenames start with an underscore, and when rendering a partial, Rails will look
for a file with the same name as the specified partial, with a leading underscore. Go
ahead and create a file: app/views/todo_items/_todo_item.html.erb with the
following content:

<li class="<%= item.completed ? "completed" : "" %>" data-id="<%=
item.id %>">
 <div class="view">
 <input class="toggle" type="checkbox" <%= "checked" if item.
completed %>>
 <label><%= item.title %></label>
 <button class="destroy"></button>
 </div>

If all went well, our view should still work as before, and we have cleaned up the
main view code nicely. Simplifying views with partials are also great for reusability,
which we'll see later on.

Our to-do list app still needs some work. At the moment, we can't add new tasks
and the completed task and delete actions don't work either. This calls for some
client-side code, which means we can finally start using some CoffeeScript.

Adding new items
To add new items to our to-do list, we'll use some of Rails' native AJAX
capabilities. The following code snippet is a modified version of the todo i
nput on our index view:

 <header id="header">
 <h1>todos</h1>
 <%= form_for TodoItem.new, :method => :post, :remote => true do
|f| %>
 <%= f.text_field :title, id:'new-todo', placeholder: 'What needs
to be done?', autofocus: true %>
 <% end %>
 </header>

So what has changed here? First, you'll notice that we have included the form_for
method, with another call to text_field inside of its block. These are Rails' view
helpers, which are Ruby methods available inside of views, that provide ways of
building the HTML output.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[90]

The form_for method will output an HTML form tag, and the text_field method
will generate an input tag inside the form, which will be of type text.

We pass a new instance of TodoItem as a parameter to the form_for method. Rails is
smart enough to know from the TodoItem instance that the form's URL should point
to TodoItemController, and will use attributes of the TodoItem model as names of
inputs inside the form.

The real magic comes in with the :remote => true parameter sent to the form_for
method. This tells Rails that you want this form to be submitted using AJAX. Rails
will take care of all of this in the background.

So which controller action will my form be submitted to? Since we specified its action
as post, it will map to a create action in TodoItemController. We don't have one
yet, so let's go and write it:

 def create
 @todo_item = TodoItem.create(params[:todo_item])
 end

Here, we create TodoItem using the :todo_item key in params—params, which is a
Ruby hash that Rails created. It contains a value with the key, :todo_items, which is
a hash containing all the parameter values that were submitted from the form. When
we pass this hash to the TodoItem.create method, Rails will know how to map
them to attributes on our new model and save it to the database.

Let's try and add a to-do item
Type a title in our input box for a new to-do item and hit Enter.

However, it seems like nothing happened. We can head over to the output of our
running Rails server session to see if we can spot any errors. If you scroll around a
bit, you should see an error similar to the following error message:

ActionView::MissingTemplate (Missing template todo_items/create, application/
create with {:locale=>[:en], :formats=>[:js, "application/

ecmascript", "application/x-ecmascript", :html, :text, :js, :css, :ics, :csv, :png, :jpeg,
:gif, :bmp, :tiff, :mpeg, :xml, :rss, :atom,

 :yaml, :multipart_form, :url_encoded_form, :json, :pdf, :zip], :handlers=>[:erb,
:builder, :coffee]}. Searched in:

 * "/home/michael/dev/todo/app/views"
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Adding a CoffeeScript view
So, it seems we still need to do one more thing. All controller actions will try and
render a view by default. When we try adding a to-do item now, we would get the
same Template is missing error as earlier. It might not be clear what should happen,
since the form was posted using AJAX. Should we still render a view? And how
would it look?

Looking at the error message a bit more closely might give us a clue. Since our action
was invoked using AJAX, Rails will, by default, look for a CoffeeScript view to
render as JavaScript.

The generated JavaScript will serve as the response to the AJAX call and will be
executed on completion. This also seems like the perfect place to update our to-do
items list, after creating it on the server.

We'll create a CoffeeScript view template for our create action in app/views/
todo_items/create.js.coffee.

$('#new-todo').val('')
html = "<%= escape_javascript(render partial: 'todo_item', locals:
{item: @todo_item}) %>"
$("#todo-list").append(html)

Here, in the previous code snippet, we grab the #new-todo input and clear its value.
We then render the same todo_item partial that we used before, passing in the @
todo_item instance variable that we created in our controller action.

We wrap the render call in an escape_javascript helper method, which will
ensure that any special JavaScript character will be escaped in our string. We then
append the newly rendered partial to our #todo-list element.

Try it out. We can now finally create to-do list items!

Where did jQuery come from?
Rails already included jQuery for us. The Rails asset pipeline uses
a manifest file, app/assets/javascript/application.js
to include required dependencies, for instance jQuery.

CoffeeScript in the asset pipeline
Notice how seamless this all was? Rails treats CoffeeScript as a first-class citizen in its
stack, and will make sure that the .coffee files get compiled into JavaScript before
they are used. The fact that you can also pre-process your CoffeeScript using ERB
templates on the server makes this even more powerful.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[92]

Completing the to-do items
Let's hook up this functionality. This time, we will do things a bit differently to show
you a different style of writing CoffeeScript in Rails. We'll follow the more traditional
approach of handling the AJAX call ourselves.

Rails has already created a file where we can put our client-side code, back when we
created the controller. Each controller will get its own CoffeeScript file, which will be
included in the page automatically for any action on that controller.

There is also an application.js.coffee file, where global
client-side code can be added.

The file that we're interested in will be app/assets/views/javascripts/todo_
items.js.coffee. We can replace the contents of it with the following code, which
will handle the AJAX call when completing a task:

toggleItem = (elem) ->
 $li = $(elem).closest('li').toggleClass("completed")
 id = $li.data 'id'

 data = "todo_item[completed]=#{elem.checked}"
 url = "/todo_items/#{id}"
 $.ajax
 type: 'PUT'
 url: url
 data: data

$ ->
 $("#todo-list").on 'change', '.toggle', (e) -> toggleItem e.target

First, we define a function called toggleItem, which we set up to be called when
a checkbox value changes. In this function we toggle the parent li element's
completed class and get the ID of the to-do item using its data attribute. We then
make an AJAX call to TodoItemController to update the item with the current
checked value of the checkbox.

Before we can run this code, we'll need to add an update action to our controller,
which is shown in the following code snippet:

 def update
 item = TodoItem.find params[:id]
 item.update_attributes params[:todo_item]
 render nothing: true
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

params[:id] will be the value of the ID in the URL. We use this to find the to-do
item and then call the update_attributes method, which do just that, update our
model and save it to the database. Note that we explicitly tell Rails not to render a
view here by calling render nothing: true.

Setting tasks to completed should now work. Notice that when you refresh the page,
tasks stay completed, since they were saved to the database.

Removing tasks
For removing tasks, we'll follow a very similar pattern.

In todo_items.js.coffee, add the following code:

destroyItem = (elem) ->
 $li = $(elem).closest('li')
 id = $li.data 'id'
 url = "/todo_items/#{id}"
 $.ajax
 url: url
 type: 'DELETE'
 success: -> $li.remove()

$ ->
 $("#todo-list").on 'change', '.toggle', (e) -> toggleItem e.target
 $("#todo-list").on 'click', '.destroy', (e) -> destroyItem e.target

In our controller, add the following code:

 def destroy
 TodoItem.find(params[:id]).destroy
 render nothing: true
 end

That should be all we need to remove list items. Notice that here we only remove the
element once the AJAX call was successful, by handling the success callback.

Now, it's your turn
As a final exercise to you, I will ask you to make the Clear completed button work.
As a hint, you should be able to use the existing destroyItem method functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Rails

[94]

Summary
This chapter started with a whirlwind tour of Ruby on Rails. You have hopefully
grown to appreciate some of the magic that Rails offers web developers and
how much fun it can be developing a Rails app. We have also spent some time
discovering how easy it is to use CoffeeScript in a Rails app, and the different
approaches and techniques you would typically use to write client-side code.

If you haven't done so already, I encourage you to spend some more time
learning Rails as well as Ruby, and immersing yourself in the wonderful
communities they support.

In the next chapter, we'll explore yet another new exciting server framework
that was built using JavaScript, and how CoffeeScript relates to it.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js
Ryan Dahl created Node.js in 2009. His goal was to create a system with which one
can write network server applications having high performance, using JavaScript.
At that time, JavaScript was mostly run inside browsers, so a server-side framework
needed some way to run JavaScript without it. Node uses Google's V8 JavaScript
engine, originally written for the Chrome browser, but since it's a separate piece of
software, it can run JavaScript code anywhere. Node.js lets you write JavaScript code
that can be executed on the server. It can make full use of your operating system,
databases, and other external network resources.

Let's talk about some of the features of Node.js.

Node is event-driven
The Node.js framework only allows non-blocking, asynchronous I/O. This means
that any I/O operation that is accessing an external resource, such as the operating
system, a database, or a network resource must happen asynchronously. This works
by using events, or callbacks that are fired once the operation succeeds or fails.

The benefit of this is that your application becomes much more scalable, because
requests don't have to wait around for slow I/O operations to finish and can instead
handle more incoming requests.

Similar frameworks do exist in other languages, such as Twisted and Tornado in
Python, and EventMachine in Ruby. A big problem with these frameworks is that all
I/O libraries they use must also be non-blocking. Often, one can end up accidentally
using code that blocks an I/O operation.

Node.js was built from the ground up with an event-driven philosophy and only
allows non-blocking I/O, thus avoiding this problem.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[96]

Node is fast and scalable
The V8 JavaScript engine used by Node.js is highly optimized for performance, thus
making Node.js applications very fast. The fact that Node is non-blocking will ensure
that your applications will be able to handle many concurrent client requests without
using a lot of system resources.

Node is not Rails
Although Node and Rails are often used to build similar types of applications, they
are in fact, quite different. Rails strives to be a full-stack solution to building web
applications, whereas Node.js is more of a low-level system for writing any type of
fast and scalable network application. It does not make a lot of assumptions on how
your application should be structured at all, except for the fact that you'll use an
event-based architecture.

Because of this, Node developers often choose from a variety of frameworks and
modules that have been built on top of Node for writing web applications, such as
Express or Flatiron.

Node and CoffeeScript
As we've seen before, CoffeeScript is available as an npm module. Therefore, writing
Node.js applications with CoffeeScript couldn't be much easier. In fact, the coffee
command that we discussed earlier will run .coffee scripts using Node by default.
To get Node installed with CoffeeScript, see Chapter 2, Running CoffeeScript.

"Hello World" in Node
Let's write the simplest Node app we can using CoffeeScript. Create a file named
hello.coffee and enter the following code in it:

http = require('http')

server = http.createServer (req, res) ->
 res.writeHead 200
 res.end 'Hello World'

server.listen 8080

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

This uses the http module of Node.js, which provides capabilities for building
an HTTP server. The require('http') function will return an instance of the
http module, which exports a createServer function. This function takes a
requestListener argument, which is a function that will respond to client
requests. In this case, we respond with an HTTP status code 200 and end the
response with Hello World as the request body. Finally, we call the listen
method on the returned server to start it up. When this method is called, the
server will listen for and handle requests until we stop it.

We can run this file with the coffee command, as shown in the following command:

coffee hello.coffee

We can test our server by browsing to http://localhost:8080/. We should see a
simple page with only the text as Hello World.

Express
As you can see, Node out of the box is very low-level and bare-boned. Building web
applications basically means writing a raw HTTP server. Luckily, a bunch of libraries
has been developed over the last few years to help out with writing web applications
on Node and to abstract away a lot of the low-level details.

Arguably, the most popular of these is Express (http://expressjs.com/). Similar
to Rails, it has quite a lot of nice features that make it easier to perform common web
application tasks, such as routing, rendering views, and hosting static resources.

In this chapter, we'll be writing a web application in Express using CoffeeScript.

WebSocket
Since I would like to show off some of the scalability features of Node and the types
of applications that it's normally used for, we'll be making use of another interesting
modern web technology, known as WebSocket.

The WebSocket protocol is a standard for allowing raw, bi-directional, and full-duplex
(simultaneous in both directions) TCP connections over the standard HTTP port 80.
This allows for a client and server to establish a long-running TCP connection with
which the server can perform push operations, which has traditionally not been
possible with HTTP. It is often used in applications where there needs to be lots of
low-latency interaction between the client and server.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[98]

Jade
Jade is a lightweight, markup templating language that lets you write elegant and
short HTML in a syntax that closely resembles CoffeeScript. It uses quite a few
features such as syntactical whitespace to reduce the number of keystrokes you
need to write HTML documents. It is usually installed by default when you run
Express, and we'll be using it in this book.

Our application
In this chapter, we're going to build a collaborative to-do list application. This
means that you'll be able to share your to-do list with other people in real time.
One or more people will be able to add, complete, or remove to-do list items at
the same time. Changes to the to-do list will be automatically propagated to all
users. This is the type of application that Node is perfect for.

Our Node.js code will consist of two distinct parts, the normal web application that
will serve static HTML, CSS, and JavaScript, and a WebSocket server that handles
the real-time updating of all the to-do list clients. Together with this, we'll have
a jQuery-driven client that will look very similar to our application in Chapter 3,
CoffeeScript and jQuery.

We'll use some of the assets (stylesheets and images) from our existing to-do list
applications. We'll also re-use the client-side jQuery code from Chapter 3, CoffeeScript
and jQuery and tweak it to fit our application. If you weren't following along in
the previous chapters, you should be able to just copy assets from the code for this
chapter as needed.

Let's get started
To get going, we'll do the following steps:

1.	 Create a folder for our application.
2.	 Specify our app dependencies using a package.json file.
3.	 Install our dependencies.
4.	 Create an app.coffee file.
5.	 Run our app for the first time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

package.json
Create a new folder named todo. Inside this folder, we'll create a file with the name
package.json. Add the following code to this file:

{
 "name": "todo",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.0.0beta6",
 "jade": "*",
 "socket.io": "*",
 "coffee-script": "*",
 "connect-assets": "*"
 }
}

This is a simple JSON file that serves as an application manifest and is used to tell
npm which dependencies you rely on in your application. Here, we're using Express
as our web framework and Jade as our templating language. Since we're going to
use WebSocket, we'll pull in socket.io. We can also make sure that CoffeeScript is
installed by adding it to our file. Lastly, we'll use connect-assets, a module that
manages client-side assets in much the same way as the Rails asset pipeline.

When dealing with the Node.js framework, you'll notice that applications are often
weaved together out of npm modules in this manner. A good place to look for npm
modules is the Node toolbox site (nodetoolbox.com).

Installing our modules
To install the dependencies in our package.json file, navigate to the project folder
on the command-line tool and run the following command:

npm install

If all went well, then we should now have all our project dependencies installed.
To verify this or just to see what npm did, you can run the following command:

npm ls

This will output a list of installed modules with their dependencies in a
tree-like format.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[100]

Creating our app
All we need to run our application is to create a main, entry point file, which is used
to hook up our Express application and specify our routes. In the root folder, create
a file named app.coffee, and add the following code to it:

express = require 'express'
app = express()

app.get '/', (req, res) ->
 res.send('Hello Express')

app.listen(3000)
console.log('Listening on port 3000')

This looks very similar to our "Hello World" example.

First, we load the Express module using the require function. Node modules are
simple; each module corresponds to a single file. Each module can declare code, which
will be exported when it is required. When you call require, and the module's name
is not that of a native module or a file path, Node will automatically look for the file in
the node_modules folder. This is of course where npm installs modules.

On the next line, we create our Express app by calling the express function and
assigning it to an app variable.

We then create an index route for our application using the get method. We specify
the path to be '/' and then pass in an anonymous function to handle the request. It
takes two parameters, the req and res parameters. Right now, we just write Hello
Express to the response and return.

We then start our app using the listen method and tell it to run on port 3000.
Lastly, we write to the standard output so that we'll know the app has started.

As you can see, the Express magic comes in with setting up routes declaratively.
With Express you can easily create routes by specifying an HTTP method, URL
path, and a function to handle the request.

Running our application
Let's run our application to see if everything worked. Inside our app folder,
type the following on the command-line tool:

coffee app.coffee

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

You should see the output as Listening on port 3000.

Point your browser to http://localhost:3000/. You should see the text
Hello Express.

To stop the Node process on the command-line tool, just use Ctrl + C.

Creating a view
Similar to other web frameworks such as Rails, Express has the concepts of views,
which let you separate your UI from your application using separate files. Usually,
these are written using a templating language such as Jade. Let's create a view for
our root action.

To do this, we'll need to:

1.	 Create a views folder and add a Jade view file.
2.	 Configure our Express application to be aware of a folder where the views

will be stored, and which templating library we're using.
3.	 Change our index route to render our view.

Let's create a new folder in our project root called views. Inside this folder, we create
a new file named index.jade. This is how it should look:

doctype 5
html
 head
 title Our Jade view
 body
 p= message

As you can see, Jade offers a very clean and terse syntax for normal HTML. You
don't have enclosing tags in angle brackets. Similar to CoffeeScript, it also uses
indentation to delimit blocks, so that you don't have to enter closing tags. The line
p= message creates a <p> tag whose contents will be evaluated to be the value of
the message field, which should be passed into our view options.

In our app.coffee file, we'll add the following code:

express = require 'express'
path = require 'path'
app = express()

app.set 'views', path.join __dirname, 'views'

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[102]

app.set 'view engine', 'jade'

app.get '/', (req, res) ->
 res.render 'index', message: "Now we're cooking with gas!"

app.listen(3000)
console.log('Listening on port 3000')

Here, we set the views folder using the set function and assigning the 'views' key.
We use the path module that we included at the top of the file to create and join our
current folder name to the views subfolder. __dirname is a global variable that refers
to the currently working folder. We also set the view engine to 'jade'.

Next up, we change our get '/' route to render the index template and pass in a
hash of options, containing the message. This is the value that then gets rendered
in our view.

Once we run our application again and refresh the page, we should now see that
our page has been updated with the new text.

node-supervisor
By now, you might be wondering if you'll need to restart our Node application
each time we make a change to our code. Ideally in development, we would like
our code to be reloaded automatically each time we make a change, similar to
how it works in Rails.

Luckily, there is a neat, open source library that we can use that does exactly that:
node-supervisor (https://github.com/isaacs/node-supervisor). We install
it like any other npm module, we just make sure to pass the -g flag to install it
globally, as shown in the following command:

npm install supervisor -g

In the terminal, you should now be able to run the supervisor by using the
following command:

supervisor app.coffee

Keep this process running in a separate window. To see if this worked, let's edit
our message that gets sent to our view; the edited message is highlighted in the
following code snippet:

app.get '/', (req, res) ->
 res.render 'index', message: "Now we're cooking with supervisor!"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

If we now refresh our page, we'll see that it has been updated. From here on, we can
make sure to keep the supervisor running and we shouldn't need to restart our Node
process to make changes.

The to-do list view
Now let's expand our view to look like our real to-do application. Edit the index.
jade file to look like the following:

doctype 5
html
 head
 title Collaborative Todo
 body
 section#todoapp
 header#header
 h1 todos
 input#new-todo(placeholder="What needs to be done?",
autofocus=true)
 section#main
 ul#todo-list
 footer#footer
 button#clear-completed Clear completed

Here is some new Jade syntax that we haven't seen before. Tag IDs are denoted by
the # symbol, so header#header becomes <header id="header">. Tag attributes
are specified within brackets, like so: tag(name="value").

Since we're not using the message variable in our template anymore, we'll remove it
from our render call in the app.coffee file, as shown in the following code snippet:

app.get '/', (req, res) ->
 res.render 'index'

Our page will now be updated, but it won't look too good. We'll use the same
stylesheet that we used in the previous project to style our page.

Not working as expected?
Remember to keep an eye on the output of the supervisor process
to see if you have any syntax errors in your CoffeeScript or Jade
template, especially if you're not seeing the expected output.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[104]

Before we use the stylesheet, we need to set up Express to serve static files for us.
Modify the app.coffee file to look like the following:

express = require 'express'
path = require 'path'

app = express()

app.set 'views', path.join __dirname, 'views'
app.set 'view engine', 'jade'
app.use(express.static(path.join __dirname, 'public'))

So what's happening in the previous code snippet? We've added support for serving
static files in a single line, but how does this work? The answer lies in how Node
uses middleware.

Middleware
The Express framework is built on top of a lower-level framework called Connect
(http://www.senchalabs.org/connect/). The basic idea of Connect is to provide
middleware for web requests.

Middleware can be chained together to produce a web application stack. Each
piece of middleware is only concerned in providing a small set of functionality
by modifying the output response or the control flow of the request.

In our example, we tell our application to use the middleware created by the
express.static function. This function will create a static file server for the
provided file path.

Our stylesheet
Create a folder named public with a subfolder named css. Save the stylesheet as
todo.css in this folder. We still need to include the stylesheet in our index view.
Add the following line—highlighted in the code snippet—to the index.jade file
in the views folder:

doctype 5
html
 head
 title Collaborative Todo
 link(rel="stylesheet", href="css/todo.css")
 body

Once we have linked to our stylesheet, we should be able to refresh our view.
It should now look much nicer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

The client side
To make our to-do application work, we're going to copy the client-side jQuery code
that we created in Chapter 3, CoffeeScript and jQuery. We're going to put it in a file
named todo.coffee.

Our next decision is, where shall we put this file? How will we compile and use its
output in our application?

We could do the same thing as we did when we built our application in Chapter 3,
CoffeeScript and jQuery, that is, create a src folder containing the client-side offeeScript
code, then compile it using the coffee command with the --watch flag. The outputted
JavaScript could then go in our public folder where we can include it as normal.
But this would mean we would have two separate background tasks running, the
supervisor task for running our server and another for compiling our client-side code.

Luckily there is a better way. You might recall that we had a reference to the
connect-assets module in our package.json file. It provides us with an asset
pipeline that is very similar to what you get in Rails. It will take care of compilation
and dependency management transparently.

We'll need to use the middleware in our app.coffee file, as highlighted in the
following code snippet:

app.set 'views', path.join __dirname, 'views'
app.set 'view engine', 'jade'
app.use(express.static(path.join __dirname, 'public'))
app.use require('connect-assets')()

The connect-assets module will, by default, use the assets folder to manage and
serve assets from. Let's create a folder named assets/js inside our root folder. We'll
create a new file in this folder named todo.coffee, containing the following code:

Storage::setObj = (key, obj) ->
 localStorage.setItem key, JSON.stringify(obj)

Storage::getObj = (key) ->
 JSON.parse this.getItem(key)

class TodoApp

 constructor: ->
 @cacheElements()
 @bindEvents()
 @displayItems()

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[106]

 cacheElements: ->
 @$input = $('#new-todo')
 @$todoList = $('#todo-list')
 @$clearCompleted = $('#clear-completed')

 bindEvents: ->
 @$input.on 'keyup', (e) => @create e
 @$todoList.on 'click', '.destroy', (e) => @destroy e.target
 @$todoList.on 'change', '.toggle', (e) => @toggle e.target
 @$clearCompleted.on 'click', (e) => @clearCompleted()

 create: (e) ->
 val = $.trim @$input.val()
 return unless e.which == 13 and val

 randomId = Math.floor Math.random()*999999

 localStorage.setObj randomId,{
 id: randomId
 title: val
 completed: false
 }
 @$input.val ''
 @displayItems()

 displayItems: ->
 @clearItems()
 @addItem(localStorage.getObj(id)) for id in Object.
keys(localStorage)

 clearItems: ->
 @$todoList.empty()

 addItem: (item) ->
 html = """
 <li #{if item.completed then 'class="completed"' else ''} data-
id="#{item.id}">
 <div class="view">
 <input class="toggle" type="checkbox" #{if item.completed
then 'checked' else ''}>
 <label>#{item.title}</label>
 <button class="destroy"></button>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

 """
 @$todoList.append html

 destroy: (elem) ->
 id = ($(elem).closest 'li').data('id')
 localStorage.removeItem id
 @displayItems()

 toggle: (elem) ->
 id = $(elem).closest('li').data('id')
 item = localStorage.getObj(id)
 item.completed = !item.completed
 localStorage.setObj(id, item)

 clearCompleted: ->
 (localStorage.removeItem id for id in Object.keys(localStorage) \
 when (localStorage.getObj id).completed)
 @displayItems()

$ ->
 app = new TodoApp()

If you were following along in Chapter 3, CoffeeScript and jQuery, then this code
should be familiar. It's our complete, client-side application that displays to-do items
and creates, updates, and destroys items in localStorage.

To use this file in our HTML we still need to include a script tag. Since we're using
jQuery, we'll also need to include the library in our HTML.

Add the following code to the bottom of the index.jade file:

script(src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js")
!= js('todo')

As you can see, we include a link to jQuery using the Google CDN. We then use
the js helper function, which is provided by connect-assets, to create a script
tag that points to our compiled todo.js file (the connect-assets module will
have compiled our CoffeeScript transparently). The != notation is Jade's syntax for
running a JavaScript function along with its result.

If all went well, we should be able to refresh the page and have a working, client-side
page for our app. Try adding new items, marking items as complete, deleting items,
and clearing completed items.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[108]

Adding collaboration
Now we're ready to add collaboration to our to-do list application. We need to
create a page where multiple users can connect to the same to-do list and can edit it
simultaneously, seeing the results in real time.

We would like to support the idea of named lists, which you can join with others to
collaborate on.

Before we dive into the functionality, let's tweak our UI a bit to support all of this.

Creating the collaboration UI
First, we'll add an input field to specify a list name and a button to join the
specified list.

Make the following changes (highlighted in the code snippet) to our index.jade
file, which will add an input element and a button element to specify our list
name and join it:

 footer#footer
 | Join list:
 input#join-list-name
 button#join Join
 button#clear-completed Clear completed
 script(src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js")
 != js('todo')

Our page should now look like the page displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

WebSocket on the client
Now let's add an event handler to connect to a room when the user clicks the
Join button.

In our todo.coffee file, we'll add the following code to our cacheElements
and bindEvents functions:

cacheElements: ->
 @$input = $('#new-todo')
 @$todoList = $('#todo-list')
 @$clearCompleted = $('#clear-completed')
 @$joinListName = $("#join-list-name")
 @$join = $('#join')

 bindEvents: ->
 @$input.on 'keyup', (e) => @create e
 @$todoList.on 'click', '.destroy', (e) => @destroy e.target
 @$todoList.on 'change', '.toggle', (e) => @toggle e.target
 @$clearCompleted.on 'click', (e) => @clearCompleted()
 @$join.on 'click', (e) => @joinList()

We grab the join-list-name input and join button elements and store them in
two instance variables. We then set up the click handler on the @$join button to
call a new function called joinList. Let's go ahead and define this function now.
Add it to the end of the class after the bindEvents function is defined:

clearCompleted: ->
 (localStorage.removeItem id for id in Object.keys(localStorage) \
 when (localStorage.getObj id).completed)
 @displayItems()

 joinList: ->
 @socket = io.connect('http://localhost:3000')

 @socket.on 'connect', =>
@socket.emit 'joinList', @$joinListName.val()

Here is where we start to use Socket.IO. The Socket.IO library comes in two parts: the
client-side library for opening a WebSocket connection, making requests, and receiving
responses, as well as the server-side node module for handling the requests.

In the preceding code, the joinList function opens a new socket using the
io.connect function and passing in the URL. It then uses the on function to pass
a handler function that will run after the WebSocket connection has been made.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[110]

The successful connection handler function will in turn use the socket.emit
function, which allows us to send a custom message to the server using joinList
as the identifier. We pass the value of the @joinListName input as its value.

Before we can start implementing the server-side code, we still need to include
a script tag to use the socket.io client library. Add the following highlighted
script tag at the bottom of the index.jade file:

script(src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js")
script(src="/socket.io/socket.io.js")
!= js('todo')

You might be wondering where this file comes from. Next, we'll set up the Socket.IO
middleware in our app.coffee file. This will host the client-side library for us.

WebSocket on the server
We have our client-side code ready to make WebSocket requests; now we can move
on to our Node backend. First, we'll need to set up our Socket.IO middleware. There
is a small caveat to this, in that we cannot use Socket.IO as a middleware of the
Express application directly, since Socket.IO expects a Node.js HTTP server and has
no direct support for Express. Instead, we'll create a web server using the built-in
Node.js HTTP module, passing our Express application as requestListener. We
can then use the listen function in Socket.IO to connect to the server.

The following is how the code looks in our app.coffee file:

express = require 'express'
path = require 'path'

app = express()
server = (require 'http').createServer app
io = (require 'socket.io').listen server

app.set 'views', path.join __dirname, 'views'
app.set 'view engine', 'jade'
app.use(express.static(path.join __dirname, 'public'))
app.use (require 'connect-assets')()

app.get '/', (req, res) ->
 res.render 'index'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

io.sockets.on 'connection', (socket) =>
 console.log('connected')
 socket.on 'joinList', (list) => console.log "Joining list #{list}"

server.listen(3000)
console.log('Listening on port 3000')

The io.sockets.on 'connection' function handles the event when a client
connects. Here, we log to the console that we're connected to and then set up
the joinList message handler. Right now, we'll just log the value that we
receive from the client to the console.

We should now be able to test connecting to a list. Refresh our to-do list home
page and enter a list name to join. After you clicked the Join button, head over
to our background supervisor task. You should see something similar to the
following message:

connected

Joining list Michael's List

It worked! We've successfully created a bi-directional WebSocket connection.
We still haven't really joined a list so far, so let's go ahead and do that now.

Joining a list
To join a list, we'll use a feature of Socket.IO called rooms. It allows the Socket.
IO server to segment its clients and emit messages to subsets of all the connected
clients. On the server, we'll keep track of the to-do lists of each room and then tell
the client to sync its local list when connected.

We'll update the app.coffee file with the highlighted code shown in the following
code snippet:

@todos = {}
io.sockets.on 'connection', (socket) =>
 console.log('connected')
 socket.on 'joinList', (list) =>
 console.log "Joining list #{list}"
 socket.list = list
 socket.join(list)
 @todos[list] ?= []
 socket.emit 'syncItems', @todos[list]

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[112]

We initialize the @todos instance variable to be an empty hash. It will hold the to-do
lists for each room, using the list name as a key. In the joinList handler function,
we set the list property of the socket variable to equal the list name that the client
passed in.

We then use the socket.join function that will join our list to a room with that
name. If the room doesn't exist yet, it will be created. We then assign an empty array
value to the item in @todos with the key equal to list. The ?= operator will only
assign the value on the right-hand side to the object on the left-hand side if it's null.

Lastly, we send a message to the client using the socket.emit function. The
syncItems identifier will tell it to sync its local data with the to-do list items that
we're passing it.

To handle the syncItems message, we'll need to update the todo.coffee file with
the following highlighted code:

 joinList: ->
 @socket = io.connect('http://localhost:3000')
 @socket.on 'connect', =>
 @socket.emit 'joinList', @$joinListName.val()

 @socket.on 'syncItems', (items) =>
 @syncItems(items)

 syncItems: (items) ->
 console.log 'syncing items'
 localStorage.clear()
 localStorage.setObj item.id, item for item in items
 @displayItems()

After joining a list, we set up our client connection to handle the syncItems message.
We expect to receive all the to-do items for the list that we have just joined. The
syncItems function will clear all the current items in localStorage, add all the new
items, and then display them.

The UI
Lastly, let's update our UI so that the user will know when they've joined a list
and let them leave it. We'll modify our #footer div tag as follows in our index.
jade file:

doctype 5
html
 head

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

 title Collaborative Todo
 link(rel="stylesheet", href="css/todo.css")
 body
 section#todoapp
 header#header
 h1 todos
 input#new-todo(placeholder="What needs to be done?",
autofocus=true)
 section#main
 ul#todo-list
 footer#footer
 section#connect
 | Join list:
 input#join-list-name
 button#join Join
 button#clear-completed Clear completed
 section#disconnect.hidden
 | Joined list:
 span#connected-list List name
 button#leave Leave
 script(src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.
min.js")
 script(src="/socket.io/socket.io.js")
 != js('todo')

In the previous markup, we've added two new sections to our footer div tag.
Each section will either be hidden or visible depending on which state we are in,
connected or disconnected from a list. The connect section is the same as before.
The disconnect section will display which list you are currently connected to and
has a Leave button.

Now we'll add code to our todo.coffee file to update the UI when a list is joined.

First, we'll cache the new elements in our cacheElements function, as highlighted
in the following code snippet:

cacheElements: ->
 @$input = $('#new-todo')
 @$todoList = $('#todo-list')
 @$clearCompleted = $('#clear-completed')
 @$joinListName = $("#join-list-name")
 @$join = $('#join')
 @$connect = $('#connect')
 @$disconnect = $('#disconnect')
 @$connectedList = $('#connected-list')
 @$leave = $('#leave')

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[114]

Next, we'll change the UI to display that we're in a connected state when syncItems
have been called (which gets fired by the server after successfully joining a list). We
use the @currentList function, which we'll set in the joinList function; add the
code highlighted in the following code snippet:

 joinList: ->
 @socket = io.connect('http://localhost:3000')
 @socket.on 'connect', =>
 @currentList = @$joinListName.val()
 @socket.emit 'joinList', @currentList

 @socket.on 'syncItems', (items) => @syncItems(items)

 syncItems: (items) ->
 console.log 'syncing items'
 localStorage.clear()
 localStorage.setObj item.id, item for item in items
 @displayItems()
 @displayConnected(@currentList)

 displayConnected: (listName) ->
 @$disconnect.removeClass 'hidden'
 @$connectedList.text listName
 @$connect.addClass 'hidden'

The displayConnected function will just hide the connect section and show the
disconnect section.

Leaving a list
Leaving a list should be quite easy. We disconnect the current socket connection and
then update the UI.

To handle the disconnect action when a button is clicked, we add a handler in our
bindEvents function, as shown in the following code snippet:

bindEvents: ->
 @$input.on 'keyup', (e) => @create e
 @$todoList.on 'click', '.destroy', (e) => @destroy e.target
 @$todoList.on 'change', '.toggle', (e) => @toggle e.target
 @$clearCompleted.on 'click', (e) => @clearCompleted()
 @$join.on 'click', (e) => @joinList()
 @$leave.on 'click', (e) => @leaveList()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

As you can see, the handler we've added will just call a leaveList function.
We still need to implement it. Add the following two functions to the end of
the class after the last function defined in our TodoApp class:

 leaveList: ->
 @socket.disconnect() if @socket
 @displayDisconnected()

 displayDisconnected: () ->
 @$disconnect.addClass 'hidden'
 @$connect.removeClass 'hidden'

Testing it all
Now let's test our list joining and leaving code. To see it all in action, follow
these steps:

1.	 Open http://localhost:3000/ in your browser.
2.	 In the browser window, type a list name and hit Join List. The UI

should update as expected.
3.	 Once you've joined a list, add a few to-do items.
4.	 Now open the site again, this time using a second browser. Since

localStorage is unique to a browser, we do this to have a clean list
of to-do items.

5.	 Once again, type the same list name as you did in the other browser
and hit Join List.

6.	 As the list is synced, you should now see the list items you've added
in before showing up.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[116]

7.	 Lastly, disconnect from a list using the Leave button.

Two lists synced from different browsers

This is great! We can now see the power of WebSockets in action. Our client is
notified when it should sync items without having to poll the server.

However, once we're connected to the list, we still cannot add new items to have
them show up in all the other clients in the room. Let's implement that.

Adding to-do items to a shared list
First, we'll handle adding new items on the server. The best place to handle this
would be in the existing create function for creating to-do items. Instead of just
adding them to localStorage, we'll also emit a message to the server telling it that
a new to-do item has been created, and pass it as a parameter. Modify the create
function to look like the following code:

create: (e) ->
 val = $.trim @$input.val()
 return unless e.which == 13 and val

 randomId = Math.floor Math.random()*999999

 newItem =
 id: randomId
 title: val

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

 completed: false

 localStorage.setObj randomId, newItem
 @socket.emit 'newItem', newItem if @socket
 @$input.val ''
 @displayItems()

We need to handle the newItem message on the server. We'll set up the code to do so
when a client joins a list, in app.coffee.

Let's modify the joinList event handler that we added before; add the highlighted
code in the following code snippet:

io.sockets.on 'connection', (socket) =>
 console.log("connected")
 socket.on 'joinList', (list) =>
 console.log "Joining list #{list}"
 socket.list = list
 socket.join(list)
 @todos[list] ?= []

 socket.emit 'syncItems', @todos[list]

 socket.on 'newItem', (todo) =>
 console.log "new todo #{todo.title}"
 @todos[list].push todo
 io.sockets.in(socket.list).emit('itemAdded', todo)

In this code snippet, we set up yet another socket event when a user joins a list. In
this case, it's for the newItem event. We add the new to-do item to our @todos array
using the push function. Then we emit a new itemAdded message to all the clients in
the current list.

What will happen with this itemAdded message? You guessed it; it will get handled
in the client again. This kind of back and forth messaging is very common in
WebSocket applications and does take some getting used to. Don't fret though; it gets
easier once you get the hang of it.

Meanwhile let's handle the itemAdded event on the client. We also set up this code in
our joinList method by adding the highlighted code in the following code snippet:

joinList: ->
 @socket = io.connect('http://localhost:3000')
 @socket.on 'connect', =>
 @currentList = @$joinListName.val()
 @socket.emit 'joinList', @currentList

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[118]

 @socket.on 'syncItems', (items) => @syncItems(items)

 @socket.on 'itemAdded', (item) =>
 localStorage.setObj item.id, item
 @displayItems()

We handle the itemAdded event by calling localStorage.setObject with the
item ID and value. This will either create a new to-do item if it's not present in
localStorage, or it will update the existing value.

And that's it! We should now be able to add items to all the clients in the list. To test
it, we'll follow similar steps to what we did earlier:

1.	 Open http://localhost:3000/ in your browser.
2.	 In the browser window, type a list name and hit Join List. The UI should

update as expected.
3.	 Now open the site again, this time using a second browser.
4.	 Once again, type the same list name as you did in the other browser and hit

Join List.
5.	 Add new to-do items in either browser. You'll see the to-do items appear in

the other browser immediately.

Wow! Isn't this impressive?

Removing to-do items from a shared list
To remove to-do items from a shared list, we'll follow a similar pattern to adding
items. In the destroy function in todo.coffee, we'll emit a removeItem message
to our socket to let the server know that a item should be removed, as shown in the
following code snippet:

destroy: (elem) ->
 id = ($(elem).closest 'li').data('id')
 localStorage.removeItem id
 @socket.emit 'removeItem', id if @socket
 @displayItems()

Once again, we set up the server-side code to handle this message by removing the
item from the shared list in memory, and then notify all clients connected to the list
that the item has been removed:

io.sockets.on 'connection', (socket) =>
 console.log("connected")
 socket.on 'joinList', (list) =>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

 console.log "Joining list #{list}"
 socket.list = list
 socket.join(list)
 @todos[list] ?= []

 socket.emit 'syncItems', @todos[list]

 socket.on 'newItem', (todo) =>
 console.log "new todo #{todo.title}"
 @todos[list].push todo
 io.sockets.in(socket.list).emit('itemAdded', todo)

 socket.on 'removeItem', (id) =>
 @todos[list] = @todos[list].filter (item) -> item.id isnt id
 io.sockets.in(socket.list).emit('itemRemoved', id)

The removeItem socket event handler gets the ID of the to-do item to remove the
task passed into it. It removes the to-do item from the list by assigning the current
value of the shared list to a new value that we create using JavaScript's array filter
function. This will select all the items that don't have the passed ID. It then calls emit
on all the client socket connections in the shared list with the itemRemoved message.

Lastly, we'll need to handle the itemRemoved message in our client. Similar to when
we added items, we'll set this up in the joinList function in todo.coffee, as shown
in the following code snippet:

joinList: ->
 @socket = io.connect('http://localhost:3000')
 @socket.on 'connect', =>
 @currentList = @$joinListName.val()
 @socket.emit 'joinList', @currentList

 @socket.on 'syncItems', (items) => @syncItems(items)

 @socket.on 'itemAdded', (item) =>
 localStorage.setObj item.id, item
 @displayItems()

 @socket.on 'itemRemoved', (id) =>
 localStorage.removeItem id
 @displayItems()

We remove the item from localStorage and update the UI.

www.it-ebooks.info

http://www.it-ebooks.info/

CoffeeScript and Node.js

[120]

To test removing items, follow these steps:
1.	 Open http://localhost:3000/ in your browser.
2.	 In the browser window, type a list name and hit Join List. The UI should

update as expected.
3.	 Once you've connected to the shared list, add a few to-do items.
4.	 Now open the site again, this time using a second browser.
5.	 Once again, type the same list name as you did in the other browser and hit

Join List. Your to-do list will be synced with the shared list and will contain
the items that you have added in the other browser.

6.	 Click the remove icon to delete to-do items in either browser. You'll see the
deleted to-do items disappear in the other browser immediately.

Now, it's your turn
As a final exercise to you, I will ask you to make the Clear completed button work.
As a hint, you should be able to use the existing destroyItem method functionality.

Summary
In this chapter, we completed our tour of the CoffeeScript ecosystem by exploring
Node.js as a fast, event-driven platform that lets you use JavaScript or CoffeeScript
to write server applications. I hope that you have been given a glimpse of the joy of
being able to write web applications using CoffeeScript on the server as well as in
the browser at the same time.

We also spent some time with some of the wonderful open source libraries and
frameworks that have been written for Node.js, like expressjs, connect, and Socket.
IO and have seen how we can successfully use npm to manage dependencies and
modules in our applications.

Our sample application was exactly the kind of thing that you would use Node.js
for, and we saw how its event-driven model lends itself to writing applications
where there are lots of constant interactions between the client and server.

Now that we've come to an end to our journey, I hope to have instilled in you the
eagerness and skills to go out and use CoffeeScript to change the world. We've
spent some time exploring not just the language but also the wonderful tools,
libraries, and frameworks that enable us to develop powerful applications more
rapidly using less code.

The future of CoffeeScript and the JavaScript ecosystem is bright, and hopefully
you'll be a part of it!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$(document).ready event handler 63
$(document).ready() function 59
@$input 68
$@todoList 69
.coffee files

running 52
@displayItems 71
@displayItems() 67
@joinListName 110
@name instance variable 34
@odometer 18
@ symbol 33
=> symbol 33

A
action function 34
addItem method 69
Apple installer

using 44, 45
ApplicationController class 80
apt-get package manager 48
arguments 12
array slicing 29
array splicing 29

B
Basecamp 73
bindEvents method 63, 67
birthday class 34
block comments 36

block strings 36
braces 9

C
cacheElements method 68
chained comparisons 36
class syntax 18
client side, Node.js application 105
closest function 71
coffee command

about 51
options 51
uses 51

coffee command, options
.coffee files, running 52
compiling to JavaScript 53
REPL 52
watch 53

CoffeeScript
about 7
array, slicing 29
array, splicing 29
chained comparisons 36
compiling, to JavaScript 53
conditional clauses 28
features 7
function arguments 12, 13
function syntax 11
installing, on Linux 48
installing, on Mac 44
installing, on Windows 43
jQuery, working with 58
logical aliases 28

www.it-ebooks.info

http://www.it-ebooks.info/

[122]

Node.js, working with 96
object syntax 16
Rails, working with 75
scopes, handling 14
switch statements 35
using 51

CoffeeScript compiler
working 40

CoffeeScript installation, on Linux
about 48
Debian 48
other distributions 48
Ubuntu and MintOS 48
with npm 49

CoffeeScript installation, on Mac
about 44
Apple installer, used 44, 45
Homebrew, used 46
with npm 47

CoffeeScript installation, on Windows 41
CoffeeScript solutions

equality operator 21
existential operator 22, 23
reserved words and object syntax, using 19
string concatenation 21

CoffeeScript stack 39
CoffeeScript syntax

about 8, 9
braces 9
parenthesis 10
semicolons 9
whitespace 9

CoffeeScript view, Rails application
adding 91

collaboration, Node.js application
adding 108

collaboration UI, Node.js application
creating 108

conditional clauses 28
Connect

about 104
URL 104

Content Delivery Network (CDN) 58
controller, Rails application 80
createItem method 67
create method 64
CSS, Rails application 82

D
data-id attribute 70
db*migrate 85
Debian 48
destructuring

about 30
using 31, 32

displayConnected function 114
displayItems method 66
Don't repeat yourself (DRY) 74

E
each iterator 87
equality operator 21
ERB templates 87
EventMachine 95
existential operator 22
Express

about 97
URL 97

express.static function 104
extends operator 18

F
filter function 119
form_for method 90
for statement 25
function arguments 12, 13
function syntax 11

G
gems 75
getLocation function 31
greet function 14

H
Homebrew

using 46
http-server

URL 61

www.it-ebooks.info

http://www.it-ebooks.info/

[123]

I
installation

CoffeeScript, on Linux 48
CoffeeScript, on Mac 44
CoffeeScript, on Windows 41
Rails 76

items, jQuery application
completing 71
removing 70

items, Rails application
adding 89, 90
displaying 87

J
Jade 98
JavaScript

Rails, working with 74, 75
javascript_include_tag method 82
joinList 109
jQuery

$ function 56
about 55
Ajax methods 58
element, changing 56
element, finding 56
using 58
utility functions 57
working, with CoffeeScript 58

jQuery application
app.coffee file, creating 59, 60
CoffeeScript, compiling 58, 59
initial HTML 62
initializing 63
items, completing 71
items, removing 70
local web server, running 61
testing 60
to-do item, adding 64
to-do item, displaying 66-69
TodoMVC 62

K
keyup event 64

L
Law of Demeter 23
Linux

CoffeeScript, installing 48
Linux or Unix

prerequisites, for building Node.js 49
list comprehensions

about 24-27
for statement 25
using 28
while loop 24

list, Node.js application
joining 111, 112
leaving 114
testing 115, 116
UI 112, 113

localStorage
about 64
using 64-66

logical aliases 28

M
Mac

CoffeeScript, installing 44
metaprogramming 74
Middleware 104
migration, Rails application 84, 85
model, Rails application 83
MRI 76
multiplesOf function 27
MVC 62

N
Node 39
Node.js

about 39, 40, 95
building 49
building, on Linux or Unix 49
building, on Windows 50
downloading 41, 42
features 95
installing 40-43
installing, on Windows 41
working, with CoffeeScript 96

www.it-ebooks.info

http://www.it-ebooks.info/

[124]

Node.js application
building 98
client side 105, 107
collaboration, adding 108
collaboration UI, creating 108
creating 100
Hello World 96, 97
list, joining 111
modules, installing 99
node-supervisor 102
package.json 99
running 100
to-do items, adding to shared list 116, 117
to-do items, removing from

shared list 118-120
to-do list view 103
view, creating 101, 102
WebSocket, on client 109
WebSocket, on server 110, 111
writing 96

Node.js wiki
URL 41

node-supervisor
about 102
URL 102

npm
about 40
installing 40, 43

O
object inheritance 17, 18
object syntax

about 16, 17
prototypes, extending 18

opinionated framework 73

P
package.json 99
parenthesis 10
partial, Rails application

creating 88, 89
pattern matching 30
Person object 34
prepare function 34

prerequisites, for building Node.js
on Linux or Unix

libssl-dev 49
Python 49

R
Rails

about 73
convention over configuration 73, 74
Don't repeat yourself (DRY) 74
features 73
installing 76
installing, RailsInstaller used 76
installing, RVM used 76
working, with CoffeeScript 75, 76
working, with JavaScript 74, 75

Rails application
CoffeeScript view, adding 91
controller 80
CSS 82
developing 77, 78
items, adding 89, 90
items, displaying 87, 88
migration 84
model 83
MVC 78
partial, creating 88, 89
Rails console 85, 86
routes.rb 80
running 78
tasks, removing 93
to-do item, adding 90
to-do items, completing 92
todo_items resource 79
view 81, 82

Rails console 85
Rails installation

about 76
RailsInstaller, used 76
RVM, used 76

RailsInstaller
about 76
URL 76

Read Eval Print Loop (REPL) 52
removeItem socket event handler 119

www.it-ebooks.info

http://www.it-ebooks.info/

[125]

requestListener 110
return keyword 12
rooms 111
routes.rb file, Rails application 80
RVM

about 76
URL 76

S
salutation variable 14
scopes, handling 14
semicolons 9
socket.emit function 110
splats 13
string concatenation 21
strings 36
stylesheet_link_tag method 82
switch statements 35

T
tasks, Rails application

removing 93
this keyword 33
TodoApp class 63
to-do item, jQuery application

adding 64
displaying 66-69

TodoItem model 83
to-do item, Rails application

adding 90
completing 92, 93

TodoItemsController 79
to-do items, Node.js application

adding, to shared list 116, 117
removing, from shared list 118, 119

todo_items resource, Rails application 79
to-do list view, Node.js application

expanding 103
Middleware 104
stylesheet 104

TodoMVC 62
Tornado 95
t.timestamps method 84
Twisted 95

U
Ubuntu and MintOS 48
until keyword 25

V
val() function 64
var keyword 14, 15
view, Node.js application

creating 101, 102
view partial 88
views, Rails application 81

W
WebSocket

about 97
on client 109
on server 110

while loop 24
whitespace 9, 10
window object 15
Windows

CoffeeScript, installing 41
Node.js, building 50

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
CoffeeScript Programming with jQuery,

Rails, and Node.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery Mobile Web Development
Essentials
ISBN: 978-1-84951-726-3 Paperback: 246 pages

Learn to use the touch-optimized, cross-device, cross-
platform jQM web framework for smartphones and
tablets

1.	 Create websites that work beautifully on a wide
range of mobile devices with jQuery mobile

2.	 Learn to prepare your jQuery mobile project by
learning through three sample applications

3.	 Packed with easy to follow examples and clear
explanations of how to easily build mobile-
optimized websites

jQuery Tools UI Library
ISBN: 978-1-84951-780-5 Paperback: 112 pages

Learn jQuery Tools with clear, practical examples and
get inspiration for developing your own ideas with
the library

1.	 Learn how to use jQuery Tools, with clear,
practical projects that you can use today in your
websites

2.	 Learn how to use useful tools such as Overlay,
Scrollable, Tabs and Tooltips

3.	 Full of practical examples and illustrations,
with code that you can use in your own
projects, straight from the book

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Node Cookbook
ISBN: 978-1-84951-718-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node

1.	 Packed with practical recipes taking you from
the basics to extending Node with your own
modules

2.	 Create your own web server to see Node's
features in action

3.	 Work with JSON, XML, web sockets, and make
the most of asynchronous programming

LiveCode Mobile Development
Beginner's Guide
ISBN: 978-1-84969-248-9 Paperback: 246 pages

Create fun-filled, rich apps for Android and iOS
with LiveCode5

1.	 Create fun, interactive apps with rich media
features of LiveCode

2.	 Step by step instructions for creating apps and
interfaces

3.	 Dive headfirst into mobile application
development using LiveCode backed with clear
explanations enriched with ample screenshots

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why CoffeeScript?
	CoffeeScript syntax
	Semicolons and braces
	Whitespace
	Parenthesis

	CoffeeScript has great function syntax
	Return isn't required
	Function arguments
	Where did the var keyword go?

	CoffeeScript handles scope better
	Top level var keywords

	CoffeeScript has better object syntax
	Inheritance
	Overwhelmed?
	Extending prototypes

	A few other things CoffeeScript fixes
	Reserved words and object syntax
	String concatenation
	Equality
	The existential operator

	List comprehensions
	The while loop

	Conditional clauses and logical aliases
	Array slicing and splicing
	Destructuring or pattern matching
	=> and @
	Switch statements
	Chained comparisons
	Block strings, block comments, and strings
	Summary

	Chapter 2: Running CoffeeScript
	The CoffeeScript stack
	Node.js and npm
	Node.js, npm, and CoffeeScript on Windows
	Installing CoffeeScript on a Mac
	Using the Apple installer
	Using Homebrew
	Installing CoffeeScript with npm

	Installing CoffeeScript on Linux
	Ubuntu and MintOS
	Debian
	Other distributions
	Installing CoffeeScript with npm

	Building Node.js from source
	Building on Linux or Unix
	Building on Windows

	Using CoffeeScript
	The coffee command
	The REPL
	Running .coffee files
	Compiling to JavaScript
	Watching
	Putting it all together

	Summary

	Chapter 3: CoffeeScript and jQuery
	Finding and changing elements
	The $ function

	Utility functions
	Ajax methods
	Using jQuery
	Using CoffeeScript and jQuery in the browser
	Compiling CoffeeScript
	jQuery and CoffeeScript
	Testing it all
	Running a local web server

	Our application
	TodoMVC
	Our initial HTML
	Initializing our app
	Adding a to-do item
	Using localStorage

	Displaying the to-do items
	Showing the to-do items
	Removing and completing items
	Now, it's your turn!

	Summary

	Chapter 4: CoffeeScript and Rails
	What makes Rails special?
	Convention over configuration
	Don't repeat yourself (DRY)

	Rails and JavaScript
	Rails and CoffeeScript
	Installing Rails
	Installing Rails using RailsInstaller
	Installing Rails using RVM
	Got Rails installed?

	Developing our Rails application
	MVC
	Running our application
	Our todo_items resource
	routes.rb
	The controller
	The view
	The CSS
	Our model
	Migrations
	The Rails console
	Displaying the items in our view using ERB
	Creating a partial
	Adding new items
	Let's try and add a to-do item
	Adding a CoffeeScript view
	CoffeeScript in the asset pipeline
	Completing the to-do items
	Removing tasks
	Now, it's your turn

	Summary

	Chapter 5: CoffeeScript and Node.js
	Node is event-driven
	Node is fast and scalable
	Node is not Rails
	Node and CoffeeScript
	"Hello World" in Node
	Express
	WebSocket
	Jade
	Our application
	Let's get started
	package.json
	Installing our modules
	Creating our app
	Running our application

	Creating a view
	node-supervisor
	The to-do list view
	Middleware
	Our stylesheet

	The client side
	Adding collaboration
	Creating the collaboration UI
	WebSocket on the client
	WebSocket on the server
	Joining a list
	The UI
	Leaving a list
	Testing it all

	Adding to-do items to a shared list
	Removing to-do items from a shared list
	Now, it's your turn

	Summary

	Index

